These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
270 related articles for article (PubMed ID: 24530865)
1. Integration of energy and electron transfer processes in the photosynthetic membrane of Rhodobacter sphaeroides. Cartron ML; Olsen JD; Sener M; Jackson PJ; Brindley AA; Qian P; Dickman MJ; Leggett GJ; Schulten K; Neil Hunter C Biochim Biophys Acta; 2014 Oct; 1837(10):1769-80. PubMed ID: 24530865 [TBL] [Abstract][Full Text] [Related]
2. FRET measurement of cytochrome bc Vasilev C; Swainsbury DJK; Cartron ML; Martin EC; Kumar S; Hobbs JK; Johnson MP; Hitchcock A; Hunter CN Biochim Biophys Acta Bioenerg; 2022 Feb; 1863(2):148508. PubMed ID: 34793767 [TBL] [Abstract][Full Text] [Related]
3. Probing the local lipid environment of the Rhodobacter sphaeroides cytochrome bc Swainsbury DJK; Proctor MS; Hitchcock A; Cartron ML; Qian P; Martin EC; Jackson PJ; Madsen J; Armes SP; Hunter CN Biochim Biophys Acta Bioenerg; 2018 Mar; 1859(3):215-225. PubMed ID: 29291373 [TBL] [Abstract][Full Text] [Related]
4. The C-terminus of PufX plays a key role in dimerisation and assembly of the reaction center light-harvesting 1 complex from Rhodobacter sphaeroides. Qian P; Martin EC; Ng IW; Hunter CN Biochim Biophys Acta Bioenerg; 2017 Sep; 1858(9):795-803. PubMed ID: 28587931 [TBL] [Abstract][Full Text] [Related]
5. Aberrant assembly complexes of the reaction center light-harvesting 1 PufX (RC-LH1-PufX) core complex of Rhodobacter sphaeroides imaged by atomic force microscopy. Olsen JD; Adams PG; Jackson PJ; Dickman MJ; Qian P; Hunter CN J Biol Chem; 2014 Oct; 289(43):29927-36. PubMed ID: 25193660 [TBL] [Abstract][Full Text] [Related]
6. Structural and functional proteomics of intracytoplasmic membrane assembly in Rhodobacter sphaeroides. Woronowicz K; Harrold JW; Kay JM; Niederman RA J Mol Microbiol Biotechnol; 2013; 23(1-2):48-62. PubMed ID: 23615195 [TBL] [Abstract][Full Text] [Related]
8. Three-dimensional structure of the Rhodobacter sphaeroides RC-LH1-PufX complex: dimerization and quinone channels promoted by PufX. Qian P; Papiz MZ; Jackson PJ; Brindley AA; Ng IW; Olsen JD; Dickman MJ; Bullough PA; Hunter CN Biochemistry; 2013 Oct; 52(43):7575-85. PubMed ID: 24131108 [TBL] [Abstract][Full Text] [Related]
9. Membrane development in purple photosynthetic bacteria in response to alterations in light intensity and oxygen tension. Niederman RA Photosynth Res; 2013 Oct; 116(2-3):333-48. PubMed ID: 23708977 [TBL] [Abstract][Full Text] [Related]
10. Cryo-EM structure of a monomeric RC-LH1-PufX supercomplex with high-carotenoid content from Rhodobacter capsulatus. Bracun L; Yamagata A; Christianson BM; Shirouzu M; Liu LN Structure; 2023 Mar; 31(3):318-328.e3. PubMed ID: 36738736 [TBL] [Abstract][Full Text] [Related]
11. Carotenoids are essential for normal levels of dimerisation of the RC-LH1-PufX core complex of Rhodobacter sphaeroides: characterisation of R-26 as a crtB (phytoene synthase) mutant. Ng IW; Adams PG; Mothersole DJ; Vasilev C; Martin EC; Lang HP; Tucker JD; Neil Hunter C Biochim Biophys Acta; 2011 Sep; 1807(9):1056-63. PubMed ID: 21651888 [TBL] [Abstract][Full Text] [Related]
13. Cross-species investigation of the functions of the Rhodobacter PufX polypeptide and the composition of the RC-LH1 core complex. Crouch LI; Jones MR Biochim Biophys Acta; 2012 Feb; 1817(2):336-52. PubMed ID: 22079525 [TBL] [Abstract][Full Text] [Related]
14. Dimerization of core complexes as an efficient strategy for energy trapping in Rhodobacter sphaeroides. Chenchiliyan M; Timpmann K; Jalviste E; Adams PG; Hunter CN; Freiberg A Biochim Biophys Acta; 2016 Jun; 1857(6):634-42. PubMed ID: 27013332 [TBL] [Abstract][Full Text] [Related]
15. The PufX quinone channel enables the light-harvesting 1 antenna to bind more carotenoids for light collection and photoprotection. Olsen JD; Martin EC; Hunter CN FEBS Lett; 2017 Feb; 591(4):573-580. PubMed ID: 28130884 [TBL] [Abstract][Full Text] [Related]
16. Functional consequences of the organization of the photosynthetic apparatus in Rhodobacter sphaeroides: II. A study of PufX- membranes. Comayras F; Jungas C; Lavergne J J Biol Chem; 2005 Mar; 280(12):11214-23. PubMed ID: 15632163 [TBL] [Abstract][Full Text] [Related]
17. Excitation energy transfer in proteoliposomes reconstituted with LH2 and RC-LH1 complexes from Rhodobacter sphaeroides. Huang X; Vasilev C; Swainsbury DJK; Hunter CN Biosci Rep; 2024 Feb; 44(2):. PubMed ID: 38227291 [TBL] [Abstract][Full Text] [Related]
18. Photosynthetic Growth and Energy Conversion in an Engineered Phototroph Containing Nagashima KVP; Nagashima S; Kitashima M; Inoue K; Madigan MT; Kimura Y; Wang-Otomo ZY Biochemistry; 2021 Sep; 60(36):2685-2690. PubMed ID: 34448581 [TBL] [Abstract][Full Text] [Related]
19. Nano-mechanical mapping of the interactions between surface-bound RC-LH1-PufX core complexes and cytochrome c 2 attached to an AFM probe. Vasilev C; Brindley AA; Olsen JD; Saer RG; Beatty JT; Hunter CN Photosynth Res; 2014 May; 120(1-2):169-80. PubMed ID: 23539360 [TBL] [Abstract][Full Text] [Related]
20. Cryo-EM structure of the monomeric Rhodobacter sphaeroides RC-LH1 core complex at 2.5 Å. Qian P; Swainsbury DJK; Croll TI; Salisbury JH; Martin EC; Jackson PJ; Hitchcock A; Castro-Hartmann P; Sader K; Hunter CN Biochem J; 2021 Oct; 478(20):3775-3790. PubMed ID: 34590677 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]