These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 24531029)

  • 1. Effect of bipolar electrode material on the reclamation of urban wastewater by an integrated electrodisinfection/electrocoagulation process.
    Llanos J; Cotillas S; Cañizares P; Rodrigo MA
    Water Res; 2014 Apr; 53():329-38. PubMed ID: 24531029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of an integrated electrodisinfection/electrocoagulation process with Al bipolar electrodes for urban wastewater reclamation.
    Cotillas S; Llanos J; Cañizares P; Mateo S; Rodrigo MA
    Water Res; 2013 Apr; 47(5):1741-50. PubMed ID: 23351433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Techno-economical evaluation of electrocoagulation for the textile wastewater using different electrode connections.
    Kobya M; Bayramoglu M; Eyvaz M
    J Hazard Mater; 2007 Sep; 148(1-2):311-8. PubMed ID: 17368931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Treatment of the baker's yeast wastewater by electrocoagulation.
    Kobya M; Delipinar S
    J Hazard Mater; 2008 Jun; 154(1-3):1133-40. PubMed ID: 18082942
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Treatment of leachate by electrocoagulation using aluminum and iron electrodes.
    Ilhan F; Kurt U; Apaydin O; Gonullu MT
    J Hazard Mater; 2008 Jun; 154(1-3):381-9. PubMed ID: 18036737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of suspended solids and turbidity from marble processing wastewaters by electrocoagulation: comparison of electrode materials and electrode connection systems.
    Solak M; Kiliç M; Hüseyin Y; Sencan A
    J Hazard Mater; 2009 Dec; 172(1):345-52. PubMed ID: 19651474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Treatment of textile wastewaters by electrocoagulation using iron and aluminum electrodes.
    Kobya M; Can OT; Bayramoglu M
    J Hazard Mater; 2003 Jun; 100(1-3):163-78. PubMed ID: 12835020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient integration of electrocoagulation treatment with the spray-pyrolyzed activated carbon coating on stainless steel electrodes for textile effluent-bath reuse with ease.
    Gowthaman S; Selvaraju T
    Water Environ Res; 2023 Oct; 95(10):e10938. PubMed ID: 37815304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical treatment and operating cost analysis of textile wastewater using sacrificial iron electrodes.
    Kobya M; Demirbas E; Akyol A
    Water Sci Technol; 2009; 60(9):2261-70. PubMed ID: 19901457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid processes for the treatment of cattle-slaughterhouse wastewater using aluminum and iron electrodes.
    Tezcan Un U; Koparal AS; Bakir Oğütveren U
    J Hazard Mater; 2009 May; 164(2-3):580-6. PubMed ID: 18819748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrocoagulation and electrooxidation pre-treatment effect on fungal treatment of pistachio processing wastewater.
    Isik Z; Arikan EB; Ozay Y; Bouras HD; Dizge N
    Chemosphere; 2020 Apr; 244():125383. PubMed ID: 31790993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effectiveness of electrocoagulation process in removing organic compounds from slaughterhouse wastewater using monopolar and bipolar electrolytic cells.
    Asselin M; Drogui P; Benmoussa H; Blais JF
    Chemosphere; 2008 Aug; 72(11):1727-33. PubMed ID: 18547609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical removal of Cr(VI) from aqueous media using iron and aluminum as electrode materials: towards a better understanding of the involved phenomena.
    Mouedhen G; Feki M; De Petris-Wery M; Ayedi HF
    J Hazard Mater; 2009 Sep; 168(2-3):983-91. PubMed ID: 19329251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effective phosphate removal for advanced water treatment using low energy, migration electric-field assisted electrocoagulation.
    Tian Y; He W; Liang D; Yang W; Logan BE; Ren N
    Water Res; 2018 Jul; 138():129-136. PubMed ID: 29574200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of oil removal from oily wastewater by electrocoagulation using response surface method.
    Tir M; Moulai-Mostefa N
    J Hazard Mater; 2008 Oct; 158(1):107-15. PubMed ID: 18313208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reducing electrocoagulation harvesting costs for practical microalgal biodiesel production.
    Dassey AJ; Theegala CS
    Environ Technol; 2014; 35(5-8):691-7. PubMed ID: 24645449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrocoagulation of a real reactive dyebath effluent using aluminum and stainless steel electrodes.
    Arslan-Alaton I; Kabdaşli I; Hanbaba D; Kuybu E
    J Hazard Mater; 2008 Jan; 150(1):166-73. PubMed ID: 17945416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Treatment of rinse water from zinc phosphate coating by batch and continuous electrocoagulation processes.
    Kobya M; Demirbas E; Dedeli A; Sensoy MT
    J Hazard Mater; 2010 Jan; 173(1-3):326-34. PubMed ID: 19748183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design development of an electrocoagulation reactor for molasses process wastewater treatment.
    Gadd AS; Ryan DR; Kavanagh JM; Barton GW
    Water Sci Technol; 2010; 61(12):3221-7. PubMed ID: 20555220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of the effect of different electrodes and their connections on the removal efficiency of 4-nitrophenol from aqueous solution by electrocoagulation.
    Modirshahla N; Behnajady MA; Mohammadi-Aghdam S
    J Hazard Mater; 2008 Jun; 154(1-3):778-86. PubMed ID: 18162293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.