These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 24531040)

  • 1. Assist-as-needed robotic trainer based on reinforcement learning and its application to dart-throwing.
    Obayashi C; Tamei T; Shibata T
    Neural Netw; 2014 May; 53():52-60. PubMed ID: 24531040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human-robot cooperative movement training: learning a novel sensory motor transformation during walking with robotic assistance-as-needed.
    Emken JL; Benitez R; Reinkensmeyer DJ
    J Neuroeng Rehabil; 2007 Mar; 4():8. PubMed ID: 17391527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Customizing skills for assistive robotic manipulators, an inverse reinforcement learning approach with error-related potentials.
    Batzianoulis I; Iwane F; Wei S; Correia CGPR; Chavarriaga R; Millán JDR; Billard A
    Commun Biol; 2021 Dec; 4(1):1406. PubMed ID: 34916587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reinforcement learning of motor skills with policy gradients.
    Peters J; Schaal S
    Neural Netw; 2008 May; 21(4):682-97. PubMed ID: 18482830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluating the User Experience of Exercising Reaching Motions With a Robot That Predicts Desired Movement Difficulty.
    Shirzad N; Van der Loos HF
    J Mot Behav; 2016; 48(1):31-46. PubMed ID: 25945816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Designing an active motor skill learning platform with a robot-assisted laparoscopic trainer.
    Lee CS; Yang L; Yang T; Chui CK; Liu J; Huang W; Su Y; Chang SK
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4534-7. PubMed ID: 22255346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A lower-limb power-assist robot with perception-assist.
    Hayashi Y; Kiguchi K
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975445. PubMed ID: 22275645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A robotic wheelchair trainer: design overview and a feasibility study.
    Marchal-Crespo L; Furumasu J; Reinkensmeyer DJ
    J Neuroeng Rehabil; 2010 Aug; 7():40. PubMed ID: 20707886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variational Information Bottleneck Regularized Deep Reinforcement Learning for Efficient Robotic Skill Adaptation.
    Xiang G; Dian S; Du S; Lv Z
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The BioMotionBot: a robotic device for applications in human motor learning and rehabilitation.
    Bartenbach V; Sander C; Pöschl M; Wilging K; Nelius T; Doll F; Burger W; Stockinger C; Focke A; Stein T
    J Neurosci Methods; 2013 Mar; 213(2):282-97. PubMed ID: 23276545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Does assist-as-needed upper limb robotic therapy promote participation in repetitive activity-based motor training in sub-acute stroke patients with severe paresis?
    Grosmaire AG; Duret C
    NeuroRehabilitation; 2017; 41(1):31-39. PubMed ID: 28527224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robotic guidance induces long-lasting changes in the movement pattern of a novel sport-specific motor task.
    Kümmel J; Kramer A; Gruber M
    Hum Mov Sci; 2014 Dec; 38():23-33. PubMed ID: 25238621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of focus of attention and type of practice on learning and self-efficacy in dart throwing.
    Shafizadeh M; Platt GK; Bahram A
    Percept Mot Skills; 2013 Aug; 117(1):1224-34. PubMed ID: 24422347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Human-assistive Robotic Platform with Quadrupedal Locomotion
    Shen T; Afsar MR; Haque MR; McClain E; Meek S; Shen X
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():305-310. PubMed ID: 31374647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impedance learning for robotic contact tasks using natural actor-critic algorithm.
    Kim B; Park J; Park S; Kang S
    IEEE Trans Syst Man Cybern B Cybern; 2010 Apr; 40(2):433-43. PubMed ID: 19696001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robot Learning of Assistive Manipulation Tasks by Demonstration via Head Gesture-based Interface.
    Kyrarini M; Zheng Q; Haseeb MA; Graser A
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():1139-1146. PubMed ID: 31374783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimizing compliant, model-based robotic assistance to promote neurorehabilitation.
    Wolbrecht ET; Chan V; Reinkensmeyer DJ; Bobrow JE
    IEEE Trans Neural Syst Rehabil Eng; 2008 Jun; 16(3):286-97. PubMed ID: 18586608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coadaptive brain-machine interface via reinforcement learning.
    DiGiovanna J; Mahmoudi B; Fortes J; Principe JC; Sanchez JC
    IEEE Trans Biomed Eng; 2009 Jan; 56(1):54-64. PubMed ID: 19224719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visual feedbacks influence short-term learning of torque versus motion profile with robotic guidance among young adults.
    Scotto CR; Blandin Y; Crolan R; Eon A; Laguillaumie P; Decatoire A
    Hum Mov Sci; 2024 Jun; 95():103221. PubMed ID: 38696914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of self-control and instructor-control feedback on motor learning in individuals with cerebral palsy.
    Hemayattalab R
    Res Dev Disabil; 2014 Nov; 35(11):2766-72. PubMed ID: 25086427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.