These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 245312)

  • 1. Experimentally induced and natural recovery from the effects of phenylalanine on brain protein synthesis.
    Hughes JV; Johnson TC
    Biochim Biophys Acta; 1978 Feb; 517(2):473-85. PubMed ID: 245312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of alpha-methylphenylalanine and phenylalanine on brain polyribosomes and protein synthesis.
    Binek PA; Johnson TC; Kelly CJ
    J Neurochem; 1981 Apr; 36(4):1476-84. PubMed ID: 7264644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of hyperphenylalaninaemia on the concentrations of aminoacyl-transfer ribonucleic acid in vivo. A mechanism for the inhibition of neural protein synthesis by phenylalanine.
    Hughes JV; Johnson TC
    Biochem J; 1977 Mar; 162(3):527-37. PubMed ID: 869903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of chronic hyperphenylalaninaemia on mouse brain protein synthesis can be prevented by other amino acids.
    Binek-Singer P; Johnson TC
    Biochem J; 1982 Aug; 206(2):407-14. PubMed ID: 7150251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Abnormal amino acid metabolism and brain protein synthesis during neural development.
    Hughes JV; Johnson TC
    Neurochem Res; 1978 Aug; 3(4):381-99. PubMed ID: 34113
    [No Abstract]   [Full Text] [Related]  

  • 6. Experimental methyl mercury neurotoxicity: locus of mercurial inhibition of brain protein synthesis in vivo and in vitro.
    Cheung MK; Verity MA
    J Neurochem; 1985 Jun; 44(6):1799-808. PubMed ID: 3845956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of ribonuclease action in phenylalanine-induced disaggregation of rat cerebral polyribosomes.
    Roberts S; Morelos BS
    J Neurochem; 1976 Feb; 26(2):387-400. PubMed ID: 1255200
    [No Abstract]   [Full Text] [Related]  

  • 8. Hyperphenylalanemia: effect on brain polyribosomes can be partially reversed by other amino acids.
    Hughes JV; Johnson TC
    Science; 1977 Jan; 195(4276):402-4. PubMed ID: 831283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mechanism of polyribosome disaggregation in brain tissue by phenylalanine.
    Taub F; Johnson TC
    Biochem J; 1975 Oct; 151(1):173-80. PubMed ID: 1212213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of dietary amino acids on transfer ribonucleic acid charging levels in rat liver.
    Shenoy ST; Rogers QR
    J Nutr; 1978 Sep; 108(9):1412-21. PubMed ID: 249332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of the active aldehyde group generated by RNA N-glycosidase in the sarcin/ricin domain of rat 28S ribosomal RNA on peptide elongation.
    Xu YZ; Liu WY
    Biol Chem; 2000 Feb; 381(2):113-9. PubMed ID: 10746742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of elevated plasma phenylalanine levels on protein synthesis rates in adult rat brain.
    Dunlop DS; Yang XR; Lajtha A
    Biochem J; 1994 Sep; 302 ( Pt 2)(Pt 2):601-10. PubMed ID: 8093014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of age on the initiation of protein synthesis in Drosophila melanogaster.
    Webster GC; Webster SL; Landis WA
    Mech Ageing Dev; 1981 May; 16(1):71-9. PubMed ID: 6789014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of cholesteryl 14-methylhexadecanoate on some ribosomal functions required for peptide elongation.
    Hradec J; Dusek Z; Mach O
    Biochem J; 1974 Feb; 138(2):147-54. PubMed ID: 4595729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of phenylalanine on amino acid metabolism and protein synthesis in brain cells in vitro.
    Hughes JV; Johnson TC
    J Neurochem; 1976 Jun; 26(6):1105-13. PubMed ID: 932716
    [No Abstract]   [Full Text] [Related]  

  • 16. Effect of aromatic acids on protein synthesis in subcellular preparations from the rat brain.
    Lähdesmäki P; Oja SS
    J Neurobiol; 1975 May; 6(3):313-20. PubMed ID: 1185188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stringent control and protein synthesis in bacteria.
    Cozzone AJ
    Biochimie; 1980; 62(10):647-64. PubMed ID: 7004494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of protein and aminoacyl-tRNA synthesis, and binding and transport sites for aromatic amino acids in the brain in vitro with aromatic acids.
    Lähdesmäki P
    Int J Neurosci; 1984 Mar; 23(1):1-13. PubMed ID: 6563016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alterations in ninhydrin-positive substances and cytoplasmic protein synthesis in the brains of ascorbic acid-deficient guinea pigs.
    Enwonwu CO
    J Neurochem; 1973 Jul; 21(1):69-78. PubMed ID: 4720903
    [No Abstract]   [Full Text] [Related]  

  • 20. Regulation of protein synthesis during postnatal maturation of mouse brain.
    Goertz B
    Mech Ageing Dev; 1979 May; 10(3-4):261-71. PubMed ID: 256610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.