BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 24531214)

  • 1. Extracellular-controlled breast cancer cell formation and growth using non-UV patterned hydrogels via optically-induced electrokinetics.
    Liu N; Liang W; Liu L; Wang Y; Mai JD; Lee GB; Li WJ
    Lab Chip; 2014 Apr; 14(7):1367-76. PubMed ID: 24531214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective pattern of cancer cell accumulation and growth using UV modulating printing of hydrogels.
    Yang W; Yu H; Wei F; Li G; Wang Y; Liu L
    Biomed Microdevices; 2015 Dec; 17(6):104. PubMed ID: 26458559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical release of hepatocyte-on-hydrogel microstructures from ITO substrates.
    Shah SS; Kim M; Foster E; Vu T; Patel D; Chen LJ; Verkhoturov SV; Schweikert E; Tae G; Revzin A
    Anal Bioanal Chem; 2012 Feb; 402(5):1847-56. PubMed ID: 22203370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of micropatterned hydrogels for neural culture systems using dynamic mask projection photolithography.
    Curley JL; Jennings SR; Moore MJ
    J Vis Exp; 2011 Feb; (48):. PubMed ID: 21372777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micropatterning of poly(ethylene glycol) diacrylate hydrogels.
    Ali S; Cuchiara ML; West JL
    Methods Cell Biol; 2014; 121():105-19. PubMed ID: 24560506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Negative dielectrophoretic patterning with colloidal particles and encapsulation into a hydrogel.
    Suzuki M; Yasukawa T; Shiku H; Matsue T
    Langmuir; 2007 Mar; 23(7):4088-94. PubMed ID: 17315897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of High-Aspect-Ratio 3D Hydrogel Microstructures Using Optically Induced Electrokinetics.
    Li Y; Lai SHS; Liu N; Zhang G; Liu L; Lee GB; Li WJ
    Micromachines (Basel); 2016 Apr; 7(4):. PubMed ID: 30407438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of poly(ethylene glycol) hydrogel micropatterns with osteoinductive growth factors and evaluation of the effects on osteoblast activity and function.
    Subramani K; Birch MA
    Biomed Mater; 2006 Sep; 1(3):144-54. PubMed ID: 18458396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photopatterning of Hydrogel Microarrays in Closed Microchips.
    Gumuscu B; Bomer JG; van den Berg A; Eijkel JC
    Biomacromolecules; 2015 Dec; 16(12):3802-10. PubMed ID: 26558488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Patterned three-dimensional encapsulation of embryonic stem cells using dielectrophoresis and stereolithography.
    Bajaj P; Marchwiany D; Duarte C; Bashir R
    Adv Healthc Mater; 2013 Mar; 2(3):450-8. PubMed ID: 23463644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical investigation of the influence of pattern topology on the mechanical behavior of PEGDA hydrogels.
    Jin T; Stanciulescu I
    Acta Biomater; 2017 Feb; 49():247-259. PubMed ID: 27856282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photo- and electropatterning of hydrogel-encapsulated living cell arrays.
    Albrecht DR; Tsang VL; Sah RL; Bhatia SN
    Lab Chip; 2005 Jan; 5(1):111-8. PubMed ID: 15616749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell transfer printing from patterned poly(ethylene glycol)-oleyl surfaces to biological hydrogels for rapid and efficient cell micropatterning.
    Takano T; Yamaguchi S; Matsunuma E; Komiya S; Shinkai M; Takezawa T; Nagamune T
    Biotechnol Bioeng; 2012 Jan; 109(1):244-51. PubMed ID: 21809333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein surface patterning using nanoscale PEG hydrogels.
    Hong Y; Krsko P; Libera M
    Langmuir; 2004 Dec; 20(25):11123-6. PubMed ID: 15568866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual-phase, surface tension-based fabrication method for generation of tumor millibeads.
    Pradhan S; Chaudhury CS; Lipke EA
    Langmuir; 2014 Apr; 30(13):3817-25. PubMed ID: 24617794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Technique of surface modification of a cell-adhesion-resistant hydrogel by a cell-adhesion-available inorganic microarray.
    Sun J; Graeter SV; Yu L; Duan S; Spatz JP; Ding J
    Biomacromolecules; 2008 Oct; 9(10):2569-72. PubMed ID: 18646821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Covalently immobilized gradients of bFGF on hydrogel scaffolds for directed cell migration.
    DeLong SA; Moon JJ; West JL
    Biomaterials; 2005 Jun; 26(16):3227-34. PubMed ID: 15603817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generating digital drug cocktails via optical manipulation of drug-containing particles and photo-patterning of hydrogels.
    Chen YS; Chung KC; Huang WY; Lee WB; Fu CY; Wang CH; Lee GB
    Lab Chip; 2019 May; 19(10):1764-1771. PubMed ID: 30942234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photolithographic patterning of polyethylene glycol hydrogels.
    Hahn MS; Taite LJ; Moon JJ; Rowland MC; Ruffino KA; West JL
    Biomaterials; 2006 Apr; 27(12):2519-24. PubMed ID: 16375965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined influence of substrate stiffness and surface topography on the antiadhesive properties of Acr-sP(EO-stat-PO) hydrogels.
    Schulte VA; Diez M; Hu Y; Möller M; Lensen MC
    Biomacromolecules; 2010 Dec; 11(12):3375-83. PubMed ID: 21033738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.