BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 24531268)

  • 1. Modelling uptake and toxicity of nickel in solution to Enchytraeus crypticus with biotic ligand model theory.
    He E; Qiu H; Van Gestel CA
    Environ Pollut; 2014 May; 188():17-26. PubMed ID: 24531268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toxicokinetics and toxicodynamics of nickel in Enchytraeus crypticus.
    He E; van Gestel CA
    Environ Toxicol Chem; 2013 Aug; 32(8):1835-41. PubMed ID: 23625585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A generic biotic ligand model quantifying the development in time of Ni toxicity to Enchytraeus crypticus.
    He E; Qiu H; Dimitrova K; Van Gestel CA
    Chemosphere; 2015 Apr; 124():170-6. PubMed ID: 25559177
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Delineating the dynamic uptake and toxicity of Ni and Co mixtures in Enchytraeus crypticus using a WHAM-FTOX approach.
    He E; Van Gestel CA
    Chemosphere; 2015 Nov; 139():216-22. PubMed ID: 26134674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Refining a biotic ligand model for nickel toxicity to barley root elongation in solution culture.
    Li B; Zhang X; Wang X; Ma Y
    Ecotoxicol Environ Saf; 2009 Sep; 72(6):1760-6. PubMed ID: 19481262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling cadmium and nickel toxicity to earthworms with the free ion approach.
    Qiu H; Vijver MG; van Gestel CA; He E; Peijnenburg WJ
    Environ Toxicol Chem; 2014 Feb; 33(2):438-46. PubMed ID: 24424623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a biotic ligand model (BLM) predicting nickel toxicity to barley (Hordeum vulgare).
    Lock K; Van Eeckhout H; De Schamphelaere KA; Criel P; Janssen CR
    Chemosphere; 2007 Jan; 66(7):1346-52. PubMed ID: 16908050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time-dependent uptake and toxicity of nickel to Enchytraeus crypticus in the presence of humic acid and fulvic acid.
    He E; Qiu H; Qiu R; Rentenaar C; Devresse Q; Van Gestel CAM
    Environ Toxicol Chem; 2017 Nov; 36(11):3019-3027. PubMed ID: 28574657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction between nickel and cobalt toxicity in Enchytraeus crypticus is due to competitive uptake.
    He E; Baas J; Van Gestel CA
    Environ Toxicol Chem; 2015 Feb; 34(2):328-37. PubMed ID: 25451140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hazard assessment of nickel nanoparticles in soil-The use of a full life cycle test with Enchytraeus crypticus.
    Santos FCF; Gomes SIL; Scott-Fordsmand JJ; Amorim MJB
    Environ Toxicol Chem; 2017 Nov; 36(11):2934-2941. PubMed ID: 28488336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uptake and toxicity of spiked nickel to earthworm Eisenia fetida in a range of Chinese soils.
    Yan Z; Wang B; Xie D; Zhou Y; Guo G; Xu M; Bai L; Hou H; Li F
    Environ Toxicol Chem; 2011 Nov; 30(11):2586-93. PubMed ID: 21898557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and validation of abiotic ligand model for nickel toxicity to wheat (Triticum aestivum).
    Jiang Y; Gu X; Zhu B; Gu C
    J Environ Sci (China); 2017 Dec; 62():22-30. PubMed ID: 29289288
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biotic ligand modeling approach: Synthesis of the effect of major cations on the toxicity of metals to soil and aquatic organisms.
    Ardestani MM; van Straalen NM; van Gestel CA
    Environ Toxicol Chem; 2015 Oct; 34(10):2194-204. PubMed ID: 25953362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of major cations on the toxicity of cadmium to Folsomia candida in a sand-solution medium analyzed by biotic ligand modeling.
    Ardestani MM; van Gestel CAM
    Environ Pollut; 2019 Mar; 246():19-25. PubMed ID: 30529937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling the joint effects of a metal and a pesticide on reproduction and toxicokinetics in Lumbricid earthworms.
    Lister LJ; Svendsen C; Wright J; Hooper HL; Spurgeon DJ
    Environ Int; 2011 May; 37(4):663-70. PubMed ID: 21329984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acute toxicity, critical body residues, Michaelis-Menten analysis of bioaccumulation, and ionoregulatory disturbance in response to waterborne nickel in four invertebrates: Chironomus riparius, Lymnaea stagnalis, Lumbriculus variegatus and Daphnia pulex.
    Leonard EM; Wood CM
    Comp Biochem Physiol C Toxicol Pharmacol; 2013 Jun; 158(1):10-21. PubMed ID: 23570754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of major cations (Ca2+, Mg2+, Na+, K+) and anions (SO4(2-), Cl- , NO3-) on Ni accumulation and toxicity in aquatic plant (Lemna minor L.): implications For Ni risk assessment.
    Gopalapillai Y; Hale B; Vigneault B
    Environ Toxicol Chem; 2013 Apr; 32(4):810-21. PubMed ID: 23297250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of soil properties on Pb bioavailability and toxicity to the soil invertebrate Enchytraeus crypticus.
    Zhang L; Verweij RA; Van Gestel CAM
    Chemosphere; 2019 Feb; 217():9-17. PubMed ID: 30391789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and validation of a terrestrial biotic ligand model for Ni toxicity to barley root elongation for non-calcareous soils.
    Lin Y; Di Toro DM; Allen HE
    Environ Pollut; 2015 Jul; 202():41-9. PubMed ID: 25800936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The relationship between metal toxicity and biotic ligand binding affinities in aquatic and soil organisms: a review.
    Ardestani MM; van Straalen NM; van Gestel CA
    Environ Pollut; 2014 Dec; 195():133-47. PubMed ID: 25217851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.