BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 24531272)

  • 1. The physiological role of riboflavin transporter and involvement of FMN-riboswitch in its gene expression in Corynebacterium glutamicum.
    Takemoto N; Tanaka Y; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2014 May; 98(9):4159-68. PubMed ID: 24531272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rho and RNase play a central role in FMN riboswitch regulation in Corynebacterium glutamicum.
    Takemoto N; Tanaka Y; Inui M
    Nucleic Acids Res; 2015 Jan; 43(1):520-9. PubMed ID: 25477389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of riboflavin (vitamin B2) transport proteins from Bacillus subtilis and Corynebacterium glutamicum.
    Vogl C; Grill S; Schilling O; Stülke J; Mack M; Stolz J
    J Bacteriol; 2007 Oct; 189(20):7367-75. PubMed ID: 17693491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extensive Identification of Bacterial Riboflavin Transporters and Their Distribution across Bacterial Species.
    Gutiérrez-Preciado A; Torres AG; Merino E; Bonomi HR; Goldbaum FA; García-Angulo VA
    PLoS One; 2015; 10(5):e0126124. PubMed ID: 25938806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ribB FMN riboswitch from Escherichia coli operates at the transcriptional and translational level and regulates riboflavin biosynthesis.
    Pedrolli D; Langer S; Hobl B; Schwarz J; Hashimoto M; Mack M
    FEBS J; 2015 Aug; 282(16):3230-42. PubMed ID: 25661987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Truncated FAD synthetase for direct biocatalytic conversion of riboflavin and analogs to their corresponding flavin mononucleotides.
    Iamurri SM; Daugherty AB; Edmondson DE; Lutz S
    Protein Eng Des Sel; 2013 Dec; 26(12):791-5. PubMed ID: 24170887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A dual control mechanism synchronizes riboflavin and sulphur metabolism in Bacillus subtilis.
    Pedrolli DB; Kühm C; Sévin DC; Vockenhuber MP; Sauer U; Suess B; Mack M
    Proc Natl Acad Sci U S A; 2015 Nov; 112(45):14054-9. PubMed ID: 26494285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RibU is an essential determinant of
    Rivera-Lugo R; Light SH; Garelis NE; Portnoy DA
    Proc Natl Acad Sci U S A; 2022 Mar; 119(13):e2122173119. PubMed ID: 35316134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Riboflavin Transporters RFVT/SLC52A Mediate Translocation of Riboflavin, Rather than FMN or FAD, across Plasma Membrane.
    Jin C; Yao Y; Yonezawa A; Imai S; Yoshimatsu H; Otani Y; Omura T; Nakagawa S; Nakagawa T; Matsubara K
    Biol Pharm Bull; 2017; 40(11):1990-1995. PubMed ID: 29093349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct evolution of riboflavin kinase significantly enhance flavin mononucleotide synthesis by design and optimization of flavin mononucleotide riboswitch.
    Du Y; Zhang X; Zhang H; Zhu R; Zhao Z; Han J; Zhang D; Zhang X; Zhang X; Pan X; You J; Rao Z
    Bioresour Technol; 2023 Aug; 381():128774. PubMed ID: 36822556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The riboflavin analog roseoflavin targets an FMN-riboswitch and blocks Listeria monocytogenes growth, but also stimulates virulence gene-expression and infection.
    Mansjö M; Johansson J
    RNA Biol; 2011; 8(4):674-80. PubMed ID: 21593602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymes in riboflavin biosynthesis: Potential antibiotic drug targets.
    Jaroensuk J; Chuaboon L; Kesornpun C; Chaiyen P
    Arch Biochem Biophys; 2023 Oct; 748():109762. PubMed ID: 37739114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uptake and Metabolism of Antibiotics Roseoflavin and 8-Demethyl-8-Aminoriboflavin in Riboflavin-Auxotrophic Listeria monocytogenes.
    Matern A; Pedrolli D; Großhennig S; Johansson J; Mack M
    J Bacteriol; 2016 Dec; 198(23):3233-3243. PubMed ID: 27672192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacterial flavin mononucleotide riboswitches as targets for flavin analogs.
    Pedrolli DB; Mack M
    Methods Mol Biol; 2014; 1103():165-76. PubMed ID: 24318894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An mRNA structure that controls gene expression by binding FMN.
    Winkler WC; Cohen-Chalamish S; Breaker RR
    Proc Natl Acad Sci U S A; 2002 Dec; 99(25):15908-13. PubMed ID: 12456892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of FMN riboswitch on antioxidant activity in Deinococcus radiodurans under H₂O₂ stress.
    Yang P; Chen Z; Shan Z; Ding X; Liu L; Guo J
    Microbiol Res; 2014; 169(5-6):411-6. PubMed ID: 24103862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The riboflavin transporter RibU in Lactococcus lactis: molecular characterization of gene expression and the transport mechanism.
    Burgess CM; Slotboom DJ; Geertsma ER; Duurkens RH; Poolman B; van Sinderen D
    J Bacteriol; 2006 Apr; 188(8):2752-60. PubMed ID: 16585736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Roseoflavin is a natural antibacterial compound that binds to FMN riboswitches and regulates gene expression.
    Lee ER; Blount KF; Breaker RR
    RNA Biol; 2009; 6(2):187-94. PubMed ID: 19246992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring the role of sigma factor gene expression on production by Corynebacterium glutamicum: sigma factor H and FMN as example.
    Taniguchi H; Wendisch VF
    Front Microbiol; 2015; 6():740. PubMed ID: 26257719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Riboflavin Transporter in Bdellovibrio exovorous JSS.
    Rodionova IA; Heidari Tajabadi F; Zhang Z; Rodionov DA; Saier MH
    J Mol Microbiol Biotechnol; 2019; 29(1-6):27-34. PubMed ID: 31509826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.