These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1034 related articles for article (PubMed ID: 24531297)

  • 21. Acclimation of leaves to contrasting irradiance in juvenile trees differing in shade tolerance.
    Wyka T; Robakowski P; Zytkowiak R
    Tree Physiol; 2007 Sep; 27(9):1293-306. PubMed ID: 17545129
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Plasticity in seedling morphology, biomass allocation and physiology among ten temperate tree species in response to shade is related to shade tolerance and not leaf habit.
    Chmura DJ; Modrzyński J; Chmielarz P; Tjoelker MG
    Plant Biol (Stuttg); 2017 Mar; 19(2):172-182. PubMed ID: 27981788
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Urban environment of New York City promotes growth in northern red oak seedlings.
    Searle SY; Turnbull MH; Boelman NT; Schuster WS; Yakir D; Griffin KL
    Tree Physiol; 2012 Apr; 32(4):389-400. PubMed ID: 22491523
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Removal of nutrient limitations in forest gaps enhances growth rate and resistance to cavitation in subtropical canopy tree species differing in shade tolerance.
    Villagra M; Campanello PI; Montti L; Goldstein G
    Tree Physiol; 2013 Mar; 33(3):285-96. PubMed ID: 23436182
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sapling leaf trait responses to light, tree height and soil nutrients for three conifer species of contrasting shade tolerance.
    Lilles EB; Astrup R; Lefrançois ML; David Coates K
    Tree Physiol; 2014 Dec; 34(12):1334-47. PubMed ID: 25422385
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Physiological, morphological and allocational plasticity in understory deciduous trees: importance of plant size and light availability.
    Delagrange S; Messier C; Lechowicz MJ; Dizengremel P
    Tree Physiol; 2004 Jul; 24(7):775-84. PubMed ID: 15123449
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Canopy gradients in leaf functional traits for species that differ in growth strategies and shade tolerance.
    Coble AP; Fogel ML; Parker GG
    Tree Physiol; 2017 Oct; 37(10):1415-1425. PubMed ID: 28486656
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Photosynthetic capacity peaks at intermediate size in temperate deciduous trees.
    Thomas SC
    Tree Physiol; 2010 May; 30(5):555-73. PubMed ID: 20335160
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydraulic conductivity of red oak (Quercus rubra L.) leaf tissue does not respond to light.
    Rockwell FE; Holbrook NM; Zwieniecki MA
    Plant Cell Environ; 2011 Apr; 34(4):565-79. PubMed ID: 21309791
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Within-twig leaf distribution patterns differ among plant life-forms in a subtropical Chinese forest.
    Meng F; Cao R; Yang D; Niklas KJ; Sun S
    Tree Physiol; 2013 Jul; 33(7):753-62. PubMed ID: 23933830
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Leaf physiology and biomass allocation of backcross hybrid American chestnut (Castanea dentata) seedlings in response to light and water availability.
    Brown CE; Mickelbart MV; Jacobs DF
    Tree Physiol; 2014 Dec; 34(12):1362-75. PubMed ID: 25428828
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Responses of hybrid poplar clones and red maple seedlings to ambient O(3) under differing light within a mixed hardwood forest.
    Wei C; Skelly JM; Pennypacker SP; Ferdinand JA; Savage JE; Stevenson RE; Davis DD
    Environ Pollut; 2004 Jul; 130(2):199-214. PubMed ID: 15158034
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Growth, biomass distribution and CO
    Walters MB; Kruger EL; Reich PB
    Oecologia; 1993 May; 94(1):7-16. PubMed ID: 28313851
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Photosynthetic characteristics in canopies of Quercus rubra, Quercus prinus and Acer rubrum differ in response to soil water availability.
    Turnbull MH; Whitehead D; Tissue DT; Schuster WS; Brown KJ; Engel VC; Griffin KL
    Oecologia; 2002 Feb; 130(4):515-524. PubMed ID: 28547252
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Population dynamics and growth patterns for a cohort of northern red oak (Quercus rubra) seedlings.
    Crow TR
    Oecologia; 1992 Aug; 91(2):192-200. PubMed ID: 28313456
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Photosynthetic acclimation to light changes in tropical monsoon forest woody species differing in adult stature.
    Cai ZQ; Rijkers T; Bongers F
    Tree Physiol; 2005 Aug; 25(8):1023-31. PubMed ID: 15929933
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Physiological strategies of co-occurring oaks in a water- and nutrient-limited ecosystem.
    Renninger HJ; Carlo N; Clark KL; Schäfer KV
    Tree Physiol; 2014 Feb; 34(2):159-73. PubMed ID: 24488856
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional traits and plasticity in response to light in seedlings of four Iberian forest tree species.
    Sánchez-Gómez D; Valladares F; Zavala MA
    Tree Physiol; 2006 Nov; 26(11):1425-33. PubMed ID: 16877327
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Shade, leaf growth and crown development of Quercus rubra, Quercus velutina, Prunus serotina and Acer rubrum seedlings.
    Gottschalk KW
    Tree Physiol; 1994; 14(7_9):735-749. PubMed ID: 14967644
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interspecific variation in nighttime transpiration and stomatal conductance in a mixed New England deciduous forest.
    Daley MJ; Phillips NG
    Tree Physiol; 2006 Apr; 26(4):411-9. PubMed ID: 16414920
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 52.