BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 24531366)

  • 21. Subcortical origins of human and monkey neocortical interneurons.
    Ma T; Wang C; Wang L; Zhou X; Tian M; Zhang Q; Zhang Y; Li J; Liu Z; Cai Y; Liu F; You Y; Chen C; Campbell K; Song H; Ma L; Rubenstein JL; Yang Z
    Nat Neurosci; 2013 Nov; 16(11):1588-97. PubMed ID: 24097041
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Origin and classification of neocortical interneurons.
    Yuste R
    Neuron; 2005 Nov; 48(4):524-7. PubMed ID: 16301166
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neocortical interneurons: from diversity, strength.
    Moore CI; Carlen M; Knoblich U; Cardin JA
    Cell; 2010 Jul; 142(2):189-93. PubMed ID: 20655460
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Dorsal Wave of Neocortical Oligodendrogenesis Begins Embryonically and Requires Multiple Sources of Sonic Hedgehog.
    Winkler CC; Yabut OR; Fregoso SP; Gomez HG; Dwyer BE; Pleasure SJ; Franco SJ
    J Neurosci; 2018 Jun; 38(23):5237-5250. PubMed ID: 29739868
    [TBL] [Abstract][Full Text] [Related]  

  • 25. GABAergic Interneurons in the Neocortex: From Cellular Properties to Circuits.
    Tremblay R; Lee S; Rudy B
    Neuron; 2016 Jul; 91(2):260-92. PubMed ID: 27477017
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cortico-cerebral histogenesis in the opossum Monodelphis domestica: generation of a hexalaminar neocortex in the absence of a basal proliferative compartment.
    Puzzolo E; Mallamaci A
    Neural Dev; 2010 Mar; 5():8. PubMed ID: 20302607
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spatio-temporal specification of olfactory bulb interneurons.
    Bovetti S; Peretto P; Fasolo A; De Marchis S
    J Mol Histol; 2007 Dec; 38(6):563-9. PubMed ID: 17588153
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Migratory response of interneurons to different regions of the developing neocortex.
    Britto JM; Obata K; Yanagawa Y; Tan SS
    Cereb Cortex; 2006 Jul; 16 Suppl 1():i57-63. PubMed ID: 16766708
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Progressive divisions of multipotent neural progenitors generate late-born chandelier cells in the neocortex.
    Sultan KT; Liu WA; Li ZL; Shen Z; Li Z; Zhang XJ; Dean O; Ma J; Shi SH
    Nat Commun; 2018 Nov; 9(1):4595. PubMed ID: 30389944
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Renshaw cells and Ia inhibitory interneurons are generated at different times from p1 progenitors and differentiate shortly after exiting the cell cycle.
    Benito-Gonzalez A; Alvarez FJ
    J Neurosci; 2012 Jan; 32(4):1156-70. PubMed ID: 22279202
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adaptive morphological changes of neocortical interneurons in response to enlarged and more complex pyramidal cells in p21H-Ras(Val12) transgenic mice.
    Alpár A; Seeger G; Härtig W; Arendt T; Gärtner U
    Brain Res Bull; 2004 Jan; 62(4):335-43. PubMed ID: 14709348
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Neocortical disynaptic inhibition requires somatodendritic integration in interneurons.
    Hull C; Adesnik H; Scanziani M
    J Neurosci; 2009 Jul; 29(28):8991-5. PubMed ID: 19605636
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interneurons of the neocortical inhibitory system.
    Markram H; Toledo-Rodriguez M; Wang Y; Gupta A; Silberberg G; Wu C
    Nat Rev Neurosci; 2004 Oct; 5(10):793-807. PubMed ID: 15378039
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Brain-derived neurotrophic factor mediates activity-dependent dendritic growth in nonpyramidal neocortical interneurons in developing organotypic cultures.
    Jin X; Hu H; Mathers PH; Agmon A
    J Neurosci; 2003 Jul; 23(13):5662-73. PubMed ID: 12843269
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cortical interneurons upregulate neurotrophins in vivo in response to targeted apoptotic degeneration of neighboring pyramidal neurons.
    Wang Y; Sheen VL; Macklis JD
    Exp Neurol; 1998 Dec; 154(2):389-402. PubMed ID: 9878177
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes.
    Anderson SA; Eisenstat DD; Shi L; Rubenstein JL
    Science; 1997 Oct; 278(5337):474-6. PubMed ID: 9334308
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Physiologically distinct temporal cohorts of cortical interneurons arise from telencephalic Olig2-expressing precursors.
    Miyoshi G; Butt SJ; Takebayashi H; Fishell G
    J Neurosci; 2007 Jul; 27(29):7786-98. PubMed ID: 17634372
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Preprodynorphin-expressing neurons constitute a large subgroup of somatostatin-expressing GABAergic interneurons in the mouse neocortex.
    Sohn J; Hioki H; Okamoto S; Kaneko T
    J Comp Neurol; 2014 May; 522(7):1506-26. PubMed ID: 24122731
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ventralized dorsal telencephalic progenitors in Pax6 mutant mice generate GABA interneurons of a lateral ganglionic eminence fate.
    Kroll TT; O'Leary DD
    Proc Natl Acad Sci U S A; 2005 May; 102(20):7374-9. PubMed ID: 15878992
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Engraftment and differentiation of neocortical progenitor cells transplanted to the embryonic brain in utero.
    Carletti B; Grimaldi P; Magrassi L; Rossi F
    J Neurocytol; 2004 May; 33(3):309-19. PubMed ID: 15475686
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.