These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 24531367)

  • 1. Spatiotemporal control of gene expression using microfluidics.
    Benedetto A; Accetta G; Fujita Y; Charras G
    Lab Chip; 2014 Apr; 14(7):1336-47. PubMed ID: 24531367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of transcriptomic and proteomic profiles demonstrates improved Madin-Darby canine kidney cell function in a renal microfluidic biochip.
    Snouber LC; Letourneur F; Chafey P; Broussard C; Monge M; Legallais C; Leclerc E
    Biotechnol Prog; 2012; 28(2):474-84. PubMed ID: 22095740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Screening the cellular microenvironment: a role for microfluidics.
    Warrick JW; Murphy WL; Beebe DJ
    IEEE Rev Biomed Eng; 2008; 1(1):75-93. PubMed ID: 20190880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epithelial-to-mesenchymal transition of human lung alveolar epithelial cells in a microfluidic gradient device.
    Kim SH; Hwang SM; Lee JM; Kang JH; Chung IY; Chung BG
    Electrophoresis; 2013 Feb; 34(3):441-7. PubMed ID: 23161566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous or Sequential Orthogonal Gradient Formation in a 3D Cell Culture Microfluidic Platform.
    Uzel SG; Amadi OC; Pearl TM; Lee RT; So PT; Kamm RD
    Small; 2016 Feb; 12(5):612-22. PubMed ID: 26619365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model.
    Chang R; Emami K; Wu H; Sun W
    Biofabrication; 2010 Dec; 2(4):045004. PubMed ID: 21079286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxygen control with microfluidics.
    Brennan MD; Rexius-Hall ML; Elgass LJ; Eddington DT
    Lab Chip; 2014 Nov; 14(22):4305-18. PubMed ID: 25251498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of static and dynamic patterned co-cultures using microfabricated parylene-C stencils.
    Wright D; Rajalingam B; Selvarasah S; Dokmeci MR; Khademhosseini A
    Lab Chip; 2007 Oct; 7(10):1272-9. PubMed ID: 17896010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic patterning of protein gradients on biomimetic hydrogel substrates.
    Cosson S; Lutolf MP
    Methods Cell Biol; 2014; 121():91-102. PubMed ID: 24560505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering of a microfluidic cell culture platform embedded with nanoscale features.
    Yang Y; Kulangara K; Sia J; Wang L; Leong KW
    Lab Chip; 2011 May; 11(9):1638-46. PubMed ID: 21442110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatiotemporal control and modeling of morphogen delivery to induce gradient patterning of stem cell differentiation using fluidic channels.
    O'Grady B; Balikov DA; Wang JX; Neal EK; Ou YC; Bardhan R; Lippmann ES; Bellan LM
    Biomater Sci; 2019 Mar; 7(4):1358-1371. PubMed ID: 30778445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hepatogenic differentiation of mesenchymal stem cells using microfluidic chips.
    Ju X; Li D; Gao N; Shi Q; Hou H
    Biotechnol J; 2008 Mar; 3(3):383-91. PubMed ID: 18098120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A self-contained, programmable microfluidic cell culture system with real-time microscopy access.
    Skafte-Pedersen P; Hemmingsen M; Sabourin D; Blaga FS; Bruus H; Dufva M
    Biomed Microdevices; 2012 Apr; 14(2):385-99. PubMed ID: 22160447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid spatial and temporal controlled signal delivery over large cell culture areas.
    VanDersarl JJ; Xu AM; Melosh NA
    Lab Chip; 2011 Sep; 11(18):3057-63. PubMed ID: 21805010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic stickers for cell- and tissue-based assays in microchannels.
    Morel M; Bartolo D; Galas JC; Dahan M; Studer V
    Lab Chip; 2009 Apr; 9(7):1011-3. PubMed ID: 19294316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimal periodic perfusion strategy for robust long-term microfluidic cell culture.
    Giulitti S; Magrofuoco E; Prevedello L; Elvassore N
    Lab Chip; 2013 Nov; 13(22):4430-41. PubMed ID: 24064704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organs-on-a-chip: a focus on compartmentalized microdevices.
    Moraes C; Mehta G; Lesher-Perez SC; Takayama S
    Ann Biomed Eng; 2012 Jun; 40(6):1211-27. PubMed ID: 22065201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a renal microchip for in vitro distal tubule models.
    Baudoin R; Griscom L; Monge M; Legallais C; Leclerc E
    Biotechnol Prog; 2007; 23(5):1245-53. PubMed ID: 17725364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative measurement and control of oxygen levels in microfluidic poly(dimethylsiloxane) bioreactors during cell culture.
    Mehta G; Mehta K; Sud D; Song JW; Bersano-Begey T; Futai N; Heo YS; Mycek MA; Linderman JJ; Takayama S
    Biomed Microdevices; 2007 Apr; 9(2):123-34. PubMed ID: 17160707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parallel microfluidic networks for studying cellular response to chemical modulation.
    Liu D; Wang L; Zhong R; Li B; Ye N; Liu X; Lin B
    J Biotechnol; 2007 Sep; 131(3):286-92. PubMed ID: 17706314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.