BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 24531381)

  • 1. Controlled release of singlet oxygen using diphenylanthracene functionalized polymer nanoparticles.
    Martins S; Farinha JP; Baleizão C; Berberan-Santos MN
    Chem Commun (Camb); 2014 Mar; 50(25):3317-20. PubMed ID: 24531381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methylene blue-containing silica-coated magnetic particles: a potential magnetic carrier for photodynamic therapy.
    Tada DB; Vono LL; Duarte EL; Itri R; Kiyohara PK; Baptista MS; Rossi LM
    Langmuir; 2007 Jul; 23(15):8194-9. PubMed ID: 17590032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Singlet oxygen generation by photoactive polymeric microparticles with enhanced aqueous compatibility.
    Fabregat V; Burguete MI; Galindo F; Luis SV
    Environ Sci Pollut Res Int; 2014 Oct; 21(20):11884-92. PubMed ID: 24271726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functionalized derivatives of 1,4-dimethylnaphthalene as precursors for biomedical applications: synthesis, structures, spectroscopy and photochemical activation in the presence of dioxygen.
    Posavec D; Zabel M; Bogner U; Bernhardt G; Knör G
    Org Biomol Chem; 2012 Sep; 10(35):7062-9. PubMed ID: 22847738
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced two-photon singlet oxygen generation by photosensitizer-doped conjugated polymer nanoparticles.
    Shen X; He F; Wu J; Xu GQ; Yao SQ; Xu QH
    Langmuir; 2011 Mar; 27(5):1739-44. PubMed ID: 21247190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Near-IR-triggered, remote-controlled release of metal ions: a novel strategy for caged ions.
    Atilgan A; Tanriverdi Eçik E; Guliyev R; Uyar TB; Erbas-Cakmak S; Akkaya EU
    Angew Chem Int Ed Engl; 2014 Sep; 53(40):10678-81. PubMed ID: 25130984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mesoporous silica nanoparticle facilitated drug release through cascade photosensitizer activation and cleavage of singlet oxygen sensitive linker.
    Lee J; Park J; Singha K; Kim WJ
    Chem Commun (Camb); 2013 Feb; 49(15):1545-7. PubMed ID: 23325385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced photodynamic therapy and effective elimination of cancer stem cells using surfactant-polymer nanoparticles.
    Usacheva M; Swaminathan SK; Kirtane AR; Panyam J
    Mol Pharm; 2014 Sep; 11(9):3186-95. PubMed ID: 25061685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photodynamic characterization and in vitro application of methylene blue-containing nanoparticle platforms.
    Tang W; Xu H; Kopelman R; Philbert MA
    Photochem Photobiol; 2005; 81(2):242-9. PubMed ID: 15595888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photothermal release of singlet oxygen from gold nanoparticles.
    Asadirad AM; Erno Z; Branda NR
    Chem Commun (Camb); 2013 Jun; 49(50):5639-41. PubMed ID: 23677062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aarhus sensor green: a fluorescent probe for singlet oxygen.
    Pedersen SK; Holmehave J; Blaikie FH; Gollmer A; Breitenbach T; Jensen HH; Ogilby PR
    J Org Chem; 2014 Apr; 79(7):3079-87. PubMed ID: 24605923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ratiometric singlet oxygen nano-optodes and their use for monitoring photodynamic therapy nanoplatforms.
    Cao Y; Koo YE; Koo SM; Kopelman R
    Photochem Photobiol; 2005; 81(6):1489-98. PubMed ID: 16107183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photodynamic therapy and two-photon bio-imaging applications of hydrophobic chromophores through amphiphilic polymer delivery.
    Gallavardin T; Maurin M; Marotte S; Simon T; Gabudean AM; Bretonnière Y; Lindgren M; Lerouge F; Baldeck PL; Stéphan O; Leverrier Y; Marvel J; Parola S; Maury O; Andraud C
    Photochem Photobiol Sci; 2011 Jul; 10(7):1216-25. PubMed ID: 21499638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional Polymeric Systems as Delivery Vehicles for Methylene Blue in Photodynamic Therapy.
    Junqueira MV; Borghi-Pangoni FB; Ferreira SB; Rabello BR; Hioka N; Bruschi ML
    Langmuir; 2016 Jan; 32(1):19-27. PubMed ID: 26673856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical modification of temoporfin--a second generation photosensitizer activated using upconverting nanoparticles for singlet oxygen generation.
    Yu Q; Rodriguez EM; Naccache R; Forgione P; Lamoureux G; Sanz-Rodriguez F; Scheglmann D; Capobianco JA
    Chem Commun (Camb); 2014 Oct; 50(81):12150-3. PubMed ID: 25174720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A uniform sub-50 nm-sized magnetic/upconversion fluorescent bimodal imaging agent capable of generating singlet oxygen by using a 980 nm laser.
    Chen F; Zhang S; Bu W; Chen Y; Xiao Q; Liu J; Xing H; Zhou L; Peng W; Shi J
    Chemistry; 2012 Jun; 18(23):7082-90. PubMed ID: 22544381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Singlet oxygen photosensitisation by the fluorescent probe Singlet Oxygen Sensor Green.
    Ragàs X; Jiménez-Banzo A; Sánchez-García D; Batllori X; Nonell S
    Chem Commun (Camb); 2009 May; (20):2920-2. PubMed ID: 19436910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Click and photo-unclick chemistry of aminoacrylate for visible light-triggered drug release.
    Bio M; Nkepang G; You Y
    Chem Commun (Camb); 2012 Jul; 48(52):6517-9. PubMed ID: 22622787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Directed molecular assembly into a biocompatible photosensitizing nanocomplex for locoregional photodynamic therapy.
    Lee YD; Cho HJ; Choi MH; Park H; Bang J; Lee S; Kwon IC; Kim S
    J Control Release; 2015 Jul; 209():12-9. PubMed ID: 25872152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anthracene-based fluorescent nanoprobes for singlet oxygen detection in biological media.
    Bresolí-Obach R; Nos J; Mora M; Sagristà ML; Ruiz-González R; Nonell S
    Methods; 2016 Oct; 109():64-72. PubMed ID: 27302662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.