BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

536 related articles for article (PubMed ID: 24531384)

  • 1. Economic and environmental characterization of an evolving Li-ion battery waste stream.
    Wang X; Gaustad G; Babbitt CW; Bailey C; Ganter MJ; Landi BJ
    J Environ Manage; 2014 Mar; 135():126-34. PubMed ID: 24531384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries.
    Chen X; Chen Y; Zhou T; Liu D; Hu H; Fan S
    Waste Manag; 2015 Apr; 38():349-56. PubMed ID: 25619126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global material flow analysis of end-of-life of lithium nickel manganese cobalt oxide batteries from battery electric vehicles.
    Shafique M; Akbar A; Rafiq M; Azam A; Luo X
    Waste Manag Res; 2023 Feb; 41(2):376-388. PubMed ID: 36373335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leaching lithium from the anode electrode materials of spent lithium-ion batteries by hydrochloric acid (HCl).
    Guo Y; Li F; Zhu H; Li G; Huang J; He W
    Waste Manag; 2016 May; 51():227-233. PubMed ID: 26674969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Circularity of Lithium-Ion Battery Materials in Electric Vehicles.
    Dunn J; Slattery M; Kendall A; Ambrose H; Shen S
    Environ Sci Technol; 2021 Apr; 55(8):5189-5198. PubMed ID: 33764763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting high value metals in lithium-ion battery recycling via shredding and size-based separation.
    Wang X; Gaustad G; Babbitt CW
    Waste Manag; 2016 May; 51():204-213. PubMed ID: 26577459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of mild organic acid reagents to recover the Co and Li from spent Li-ion batteries.
    Nayaka GP; Pai KV; Manjanna J; Keny SJ
    Waste Manag; 2016 May; 51():234-238. PubMed ID: 26709049
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantifying the environmental impact of a Li-rich high-capacity cathode material in electric vehicles via life cycle assessment.
    Wang Y; Yu Y; Huang K; Chen B; Deng W; Yao Y
    Environ Sci Pollut Res Int; 2017 Jan; 24(2):1251-1260. PubMed ID: 27770328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A sustainable process for the recovery of valuable metals from spent lithium-ion batteries.
    Fan B; Chen X; Zhou T; Zhang J; Xu B
    Waste Manag Res; 2016 May; 34(5):474-81. PubMed ID: 26951340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical recycling of cell phone Li-ion batteries: Application in environmental remediation.
    Gonçalves MC; Garcia EM; Taroco HA; Gorgulho HF; Melo JO; Silva RR; Souza AG
    Waste Manag; 2015 Jun; 40():144-50. PubMed ID: 25728092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environmental friendly leaching reagent for cobalt and lithium recovery from spent lithium-ion batteries.
    Li L; Ge J; Chen R; Wu F; Chen S; Zhang X
    Waste Manag; 2010 Dec; 30(12):2615-21. PubMed ID: 20817431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of recycling on cradle-to-gate energy consumption and greenhouse gas emissions of automotive lithium-ion batteries.
    Dunn JB; Gaines L; Sullivan J; Wang MQ
    Environ Sci Technol; 2012 Nov; 46(22):12704-10. PubMed ID: 23075406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recycling of spent lithium-ion battery with polyvinyl chloride by mechanochemical process.
    Wang MM; Zhang CC; Zhang FS
    Waste Manag; 2017 Sep; 67():232-239. PubMed ID: 28502601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lithium-ion batteries towards circular economy: A literature review of opportunities and issues of recycling treatments.
    Mossali E; Picone N; Gentilini L; Rodrìguez O; Pérez JM; Colledani M
    J Environ Manage; 2020 Jun; 264():110500. PubMed ID: 32250918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of indirect non-contact bioleaching for extracting metals from waste lithium-ion batteries.
    Boxall NJ; Cheng KY; Bruckard W; Kaksonen AH
    J Hazard Mater; 2018 Oct; 360():504-511. PubMed ID: 30144769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ferrioxalate photolysis-assisted green recovery of valuable resources from spent lithium iron phosphate batteries.
    Hua Y; Zhang Z
    Waste Manag; 2024 Jun; 183():199-208. PubMed ID: 38761484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recovery of cathode materials and Al from spent lithium-ion batteries by ultrasonic cleaning.
    He LP; Sun SY; Song XF; Yu JG
    Waste Manag; 2015 Dec; 46():523-8. PubMed ID: 26323202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stepwise recycling of valuable metals from Ni-rich cathode material of spent lithium-ion batteries.
    Yang Y; Lei S; Song S; Sun W; Wang L
    Waste Manag; 2020 Feb; 102():131-138. PubMed ID: 31677520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lithium recycling and cathode material regeneration from acid leach liquor of spent lithium-ion battery via facile co-extraction and co-precipitation processes.
    Yang Y; Xu S; He Y
    Waste Manag; 2017 Jun; 64():219-227. PubMed ID: 28336333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Environmental impact assessment of second life and recycling for LiFePO
    Wang Y; Tang B; Shen M; Wu Y; Qu S; Hu Y; Feng Y
    J Environ Manage; 2022 Jul; 314():115083. PubMed ID: 35447455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.