These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

546 related articles for article (PubMed ID: 24531384)

  • 21. Environmental impact assessment of second life and recycling for LiFePO
    Wang Y; Tang B; Shen M; Wu Y; Qu S; Hu Y; Feng Y
    J Environ Manage; 2022 Jul; 314():115083. PubMed ID: 35447455
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recycling of LiNi
    Meng X; Hao J; Cao H; Lin X; Ning P; Zheng X; Chang J; Zhang X; Wang B; Sun Z
    Waste Manag; 2019 Feb; 84():54-63. PubMed ID: 30691913
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Selective reductive leaching of cobalt and lithium from industrially crushed waste Li-ion batteries in sulfuric acid system.
    Peng C; Hamuyuni J; Wilson BP; Lundström M
    Waste Manag; 2018 Jun; 76():582-590. PubMed ID: 29510945
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thermal treatment and ammoniacal leaching for the recovery of valuable metals from spent lithium-ion batteries.
    Chen Y; Liu N; Hu F; Ye L; Xi Y; Yang S
    Waste Manag; 2018 May; 75():469-476. PubMed ID: 29478957
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A review on management of spent lithium ion batteries and strategy for resource recycling of all components from them.
    Zhang W; Xu C; He W; Li G; Huang J
    Waste Manag Res; 2018 Feb; 36(2):99-112. PubMed ID: 29241402
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A feasible process for recycling valuable metals from LiNi
    Liu DY; Sun SN; Li DY
    Environ Technol; 2024 Jun; 45(16):3189-3201. PubMed ID: 37158845
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recovery of value-added products from cathode and anode material of spent lithium-ion batteries.
    Natarajan S; Boricha AB; Bajaj HC
    Waste Manag; 2018 Jul; 77():455-465. PubMed ID: 29706480
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An environmental benign process for cobalt and lithium recovery from spent lithium-ion batteries by mechanochemical approach.
    Wang MM; Zhang CC; Zhang FS
    Waste Manag; 2016 May; 51():239-244. PubMed ID: 26965214
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Energy and environmental assessment of a traction lithium-ion battery pack for plug-in hybrid electric vehicles.
    Cusenza MA; Bobba S; Ardente F; Cellura M; Di Persio F
    J Clean Prod; 2019 Apr; 215():634-649. PubMed ID: 31007414
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Environment-friendly technology for recovering cathode materials from spent lithium iron phosphate batteries.
    Bi H; Zhu H; Zu L; Gao Y; Gao S; Bai Y
    Waste Manag Res; 2020 Aug; 38(8):911-920. PubMed ID: 32552572
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Selective recycling of lithium from spent LiNi
    Zhang J; Ding Y; Shi H; Shao P; Yuan X; Hu X; Zhang Q; Zhang H; Luo D; Wang C; Yang L; Luo X
    J Environ Manage; 2024 Feb; 352():120021. PubMed ID: 38183916
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Extraction of Li and Co from industrially produced Li-ion battery waste - Using the reductive power of waste itself.
    Peng C; Liu F; Aji AT; Wilson BP; Lundström M
    Waste Manag; 2019 Jul; 95():604-611. PubMed ID: 31351647
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Battery related cobalt and REE flows in WEEE treatment.
    Sommer P; Rotter VS; Ueberschaar M
    Waste Manag; 2015 Nov; 45():298-305. PubMed ID: 26054962
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Environment-friendly, efficient process for mechanical recovery of waste lithium iron phosphate batteries.
    Bai Y; Zhu H; Zu L; Zhang Y; Bi H
    Waste Manag Res; 2023 Oct; 41(10):1549-1558. PubMed ID: 37070218
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Environmentally-friendly lithium recycling from a spent organic li-ion battery.
    Renault S; Brandell D; Edström K
    ChemSusChem; 2014 Oct; 7(10):2859-67. PubMed ID: 25170568
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Combinatorial Study of the Li-Ni-Mn-Co Oxide Pseudoquaternary System for Use in Li-Ion Battery Materials Research.
    Brown CR; McCalla E; Watson C; Dahn JR
    ACS Comb Sci; 2015 Jun; 17(6):381-91. PubMed ID: 25970448
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A review on the recycling of spent lithium iron phosphate batteries.
    Zhao T; Li W; Traversy M; Choi Y; Ghahreman A; Zhao Z; Zhang C; Zhao W; Song Y
    J Environ Manage; 2024 Feb; 351():119670. PubMed ID: 38039588
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Crushing of large Li-ion battery cells.
    Wuschke L; Jäckel HG; Leißner T; Peuker UA
    Waste Manag; 2019 Feb; 85():317-326. PubMed ID: 30803586
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hydrometallurgical recovery of spent cobalt-based lithium-ion battery cathodes using ethanol as the reducing agent.
    Zhao J; Zhang B; Xie H; Qu J; Qu X; Xing P; Yin H
    Environ Res; 2020 Feb; 181():108803. PubMed ID: 31761334
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chemical-biological hybrid systems for the metal recovery from waste lithium ion battery.
    Dolker T; Pant D
    J Environ Manage; 2019 Oct; 248():109270. PubMed ID: 31352274
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.