These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 24531469)

  • 1. Novel complex MAD phasing and RNase H structural insights using selenium oligonucleotides.
    Abdur R; Gerlits OO; Gan J; Jiang J; Salon J; Kovalevsky AY; Chumanevich AA; Weber IT; Huang Z
    Acta Crystallogr D Biol Crystallogr; 2014 Feb; 70(Pt 2):354-61. PubMed ID: 24531469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selenium derivatization of nucleic acids for X-ray crystal-structure and function studies.
    Sheng J; Huang Z
    Chem Biodivers; 2010 Apr; 7(4):753-85. PubMed ID: 20397215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How RNase HI (Escherichia coli) promoted site-selective hydrolysis works on RNA in duplex with carba-LNA and LNA substituted antisense strands in an antisense strategy context?
    Plashkevych O; Li Q; Chattopadhyaya J
    Mol Biosyst; 2017 May; 13(5):921-938. PubMed ID: 28352859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Covalent incorporation of selenium into oligonucleotides for X-ray crystal structure determination via MAD: proof of principle. Multiwavelength anomalous dispersion.
    Teplova M; Wilds CJ; Wawrzak Z; Tereshko V; Du Q; Carrasco N; Huang Z; Egli M
    Biochimie; 2002 Sep; 84(9):849-58. PubMed ID: 12458077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selenium derivatization of nucleic acids for crystallography.
    Jiang J; Sheng J; Carrasco N; Huang Z
    Nucleic Acids Res; 2007; 35(2):477-85. PubMed ID: 17169989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Derivatization of DNAs with selenium at 6-position of guanine for function and crystal structure studies.
    Salon J; Jiang J; Sheng J; Gerlits OO; Huang Z
    Nucleic Acids Res; 2008 Dec; 36(22):7009-18. PubMed ID: 18986998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural biochemistry of a type 2 RNase H: RNA primer recognition and removal during DNA replication.
    Chapados BR; Chai Q; Hosfield DJ; Qiu J; Shen B; Tainer JA
    J Mol Biol; 2001 Mar; 307(2):541-56. PubMed ID: 11254381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activity, stability, and structure of metagenome-derived LC11-RNase H1, a homolog of Sulfolobus tokodaii RNase H1.
    Nguyen TN; Angkawidjaja C; Kanaya E; Koga Y; Takano K; Kanaya S
    Protein Sci; 2012 Apr; 21(4):553-61. PubMed ID: 22389131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of a 4-selenothymidine phosphoramidite and incorporation into oligonucleotides.
    Sheng J; Huang Z
    Curr Protoc Nucleic Acid Chem; 2008 Mar; Chapter 1():Unit 1.19. PubMed ID: 18428801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The structure of the mammalian RNase H2 complex provides insight into RNA.NA hybrid processing to prevent immune dysfunction.
    Shaban NM; Harvey S; Perrino FW; Hollis T
    J Biol Chem; 2010 Feb; 285(6):3617-3624. PubMed ID: 19923215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structures of RNase H bound to an RNA/DNA hybrid: substrate specificity and metal-dependent catalysis.
    Nowotny M; Gaidamakov SA; Crouch RJ; Yang W
    Cell; 2005 Jul; 121(7):1005-16. PubMed ID: 15989951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. E. coli RNase HI and the phosphonate-DNA/RNA hybrid: molecular dynamics simulations.
    Barvik I
    Nucleosides Nucleotides Nucleic Acids; 2005; 24(5-7):435-41. PubMed ID: 16247966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binding affinity and specificity of Escherichia coli RNase H1: impact on the kinetics of catalysis of antisense oligonucleotide-RNA hybrids.
    Lima WF; Crooke ST
    Biochemistry; 1997 Jan; 36(2):390-8. PubMed ID: 9003192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural basis of cleavage by RNase H of hybrids of arabinonucleic acids and RNA.
    Minasov G; Teplova M; Nielsen P; Wengel J; Egli M
    Biochemistry; 2000 Apr; 39(13):3525-32. PubMed ID: 10736151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of ribonuclease H phased at 2 A resolution by MAD analysis of the selenomethionyl protein.
    Yang W; Hendrickson WA; Crouch RJ; Satow Y
    Science; 1990 Sep; 249(4975):1398-405. PubMed ID: 2169648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human RNase H1 uses one tryptophan and two lysines to position the enzyme at the 3'-DNA/5'-RNA terminus of the heteroduplex substrate.
    Lima WF; Wu H; Nichols JG; Prakash TP; Ravikumar V; Crooke ST
    J Biol Chem; 2003 Dec; 278(50):49860-7. PubMed ID: 14506260
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNase H sequence preferences influence antisense oligonucleotide efficiency.
    Kielpinski LJ; Hagedorn PH; Lindow M; Vinther J
    Nucleic Acids Res; 2017 Dec; 45(22):12932-12944. PubMed ID: 29126318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies of the interactions between Escherichia coli ribonuclease HI and its substrate.
    Uchiyama Y; Miura Y; Inoue H; Ohtsuka E; Ueno Y; Ikehara M; Iwai S
    J Mol Biol; 1994 Nov; 243(4):782-91. PubMed ID: 7525971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic mechanism of RNA backbone cleavage by ribonuclease H from quantum mechanics/molecular mechanics simulations.
    Rosta E; Nowotny M; Yang W; Hummer G
    J Am Chem Soc; 2011 Jun; 133(23):8934-41. PubMed ID: 21539371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of mixed-backbone oligonucleotides on target binding affinity and target cleaving specificity and selectivity by Escherichia coli RNase H.
    Shen LX; Kandimalla ER; Agrawal S
    Bioorg Med Chem; 1998 Oct; 6(10):1695-705. PubMed ID: 9839001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.