BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 24531470)

  • 1. A regular thymine tetrad and a peculiar supramolecular assembly in the first crystal structure of an all-LNA G-quadruplex.
    Russo Krauss I; Parkinson GN; Merlino A; Mattia CA; Randazzo A; Novellino E; Mazzarella L; Sica F
    Acta Crystallogr D Biol Crystallogr; 2014 Feb; 70(Pt 2):362-70. PubMed ID: 24531470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NMR solution structure of a parallel LNA quadruplex.
    Randazzo A; Esposito V; Ohlenschläger O; Ramachandran R; Mayola L
    Nucleic Acids Res; 2004; 32(10):3083-92. PubMed ID: 15181173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energetic aspects of locked nucleic acids quadruplex association and dissociation.
    Petraccone L; Erra E; Randazzo A; Giancola C
    Biopolymers; 2006 Dec; 83(6):584-94. PubMed ID: 16944520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selection of G-quadruplex folding topology with LNA-modified human telomeric sequences in K+ solution.
    Pradhan D; Hansen LH; Vester B; Petersen M
    Chemistry; 2011 Feb; 17(8):2405-13. PubMed ID: 21264960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A thymine tetrad in d(TGGGGT) quadruplexes stabilized with Tl+/Na+ ions.
    Cáceres C; Wright G; Gouyette C; Parkinson G; Subirana JA
    Nucleic Acids Res; 2004; 32(3):1097-102. PubMed ID: 14960719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Locked nucleic acid building blocks as versatile tools for advanced G-quadruplex design.
    Haase L; Weisz K
    Nucleic Acids Res; 2020 Oct; 48(18):10555-10566. PubMed ID: 32890406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NMR solution structures of LNA (locked nucleic acid) modified quadruplexes.
    Nielsen JT; Arar K; Petersen M
    Nucleic Acids Res; 2006; 34(7):2006-14. PubMed ID: 16614450
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of quadruplex-forming tetra-end-linked oligonucleotides: effects of the linker size on quadruplex topology and stability.
    Oliviero G; Borbone N; Amato J; D'Errico S; Galeone A; Piccialli G; Varra M; Mayol L
    Biopolymers; 2009 Jun; 91(6):466-77. PubMed ID: 19189376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bulges in G-quadruplexes: broadening the definition of G-quadruplex-forming sequences.
    Mukundan VT; Phan AT
    J Am Chem Soc; 2013 Apr; 135(13):5017-28. PubMed ID: 23521617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sugar-modified G-quadruplexes: effects of LNA-, 2'F-RNA- and 2'F-ANA-guanosine chemistries on G-quadruplex structure and stability.
    Li Z; Lech CJ; Phan AT
    Nucleic Acids Res; 2014 Apr; 42(6):4068-79. PubMed ID: 24371274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A double chain reversal loop and two diagonal loops define the architecture of a unimolecular DNA quadruplex containing a pair of stacked G(syn)-G(syn)-G(anti)-G(anti) tetrads flanked by a G-(T-T) Triad and a T-T-T triple.
    Kuryavyi V; Majumdar A; Shallop A; Chernichenko N; Skripkin E; Jones R; Patel DJ
    J Mol Biol; 2001 Jun; 310(1):181-94. PubMed ID: 11419945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectral properties and thermal stability of AS1411 G-quadruplex.
    Bagheri Z; Ranjbar B; Latifi H; Zibaii MI; Moghadam TT; Azizi A
    Int J Biol Macromol; 2015 Jan; 72():806-11. PubMed ID: 25251241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental demonstration of T:(G:G:G:G):T hexad and T:A:A:T tetrad alignments within a DNA quadruplex stem.
    Webba da Silva M
    Biochemistry; 2005 Mar; 44(10):3754-64. PubMed ID: 15751952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carba-LNA-5MeC/A/G/T modified oligos show nucleobase-specific modulation of 3'-exonuclease activity, thermodynamic stability, RNA selectivity, and RNase H elicitation: synthesis and biochemistry.
    Upadhayaya R; Deshpande SG; Li Q; Kardile RA; Sayyed AY; Kshirsagar EK; Salunke RV; Dixit SS; Zhou C; Földesi A; Chattopadhyaya J
    J Org Chem; 2011 Jun; 76(11):4408-31. PubMed ID: 21500818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA-based nanostructures: The effect of the base sequence on octamer formation from d(XGGYGGT) tetramolecular G-quadruplexes.
    D'Atri V; Borbone N; Amato J; Gabelica V; D'Errico S; Piccialli G; Mayol L; Oliviero G
    Biochimie; 2014 Apr; 99():119-28. PubMed ID: 24316277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural study of four-stranded quadruplex structures containing 2'-deoxy-8-(propyn-1-yl)adenosine.
    Esposito V; Randazzo A; Galeone A; Varra M; Mayol L
    Bioorg Med Chem; 2004 Mar; 12(5):1191-7. PubMed ID: 14980630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 1H-NMR study of the quadruplex [d(TGGGT)]4 containing a modified thymine.
    Petraccone L; Erra E; Nasti L; Galeone A; Randazzo A; Esposito V; Mayol L; Barone G; Giancola C
    Nucleosides Nucleotides Nucleic Acids; 2003; 22(5-8):1677-80. PubMed ID: 14565493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of chemical modifications on the thermal stability of different G-quadruplex-forming oligonucleotides.
    Saccà B; Lacroix L; Mergny JL
    Nucleic Acids Res; 2005; 33(4):1182-92. PubMed ID: 15731338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of the properties and the solution structure for RNA and DNA quadruplexes which contain two GGAGG sequences joined with a tetranucleotide linker.
    Liu H; Kugimiya A; Sakurai T; Katahira M; Uesugi S
    Nucleosides Nucleotides Nucleic Acids; 2002; 21(11-12):785-801. PubMed ID: 12537021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of an interlocked quadruplex dimer by d(GGGT).
    Krishnan-Ghosh Y; Liu D; Balasubramanian S
    J Am Chem Soc; 2004 Sep; 126(35):11009-16. PubMed ID: 15339186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.