These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 2453178)

  • 1. Furosemide-sensitive sodium and potassium fluxes in human neonatal erythrocytes.
    Serrani RE; Corchs JL
    Arch Int Physiol Biochim; 1987 Nov; 95(4):341-6. PubMed ID: 2453178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Potassium ion transport in the erythrocytes of the frog Rana ridibunda].
    Agalakova NI; Lapin AV; Gusev GP
    Zh Evol Biokhim Fiziol; 1995; 31(2):161-9. PubMed ID: 7483911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sodium and potassium transport in trout (Salmo gairdneri) erythrocytes.
    Bourne PK; Cossins AR
    J Physiol; 1984 Feb; 347():361-75. PubMed ID: 6707960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Volume regulation in red blood cells of the frog Rana temporaria after osmotic shrinkage and swelling.
    Gusev GP; Lapin AV; Agulakova NI
    Membr Cell Biol; 1997; 11(3):305-17. PubMed ID: 9460050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methodological assessment of assays for intracellular concentration and transmembrane fluxes of sodium and potassium in erythrocytes of man.
    Lijnen P; Groeseneken D; Laermans M; Lommelen G; Piccart Y; Amery A
    Methods Find Exp Clin Pharmacol; 1984 Jun; 6(6):293-301. PubMed ID: 6087051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Erythrocyte cationic transport systems in normal male and female volunteers.
    Lijnen P; M'Buyamba-Kabangu JR; Lissens W; Amery A
    Methods Find Exp Clin Pharmacol; 1985 Jan; 7(1):35-40. PubMed ID: 2985891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Volume-sensitive Cl-dependent K transport in human erythrocytes.
    O'Neill WC
    Am J Physiol; 1987 Dec; 253(6 Pt 1):C883-8. PubMed ID: 2447785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intracellular sodium, potassium and magnesium concentration, ouabain-sensitive 86rubidium-uptake and sodium-efflux and Na+, K+-cotransport activity in erythrocytes of normal male subjects studied on two occasions.
    Lijnen P; Hespel P; Lommelen G; Laermans M; M'Buyamba-Kabangu JR; Amery A
    Methods Find Exp Clin Pharmacol; 1986 Sep; 8(9):525-33. PubMed ID: 3773597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell volume regulation in hemoglobin CC and AA erythrocytes.
    Berkowitz LR; Orringer EP
    Am J Physiol; 1987 Mar; 252(3 Pt 1):C300-6. PubMed ID: 3826359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of furosemide treatment on fluid and electrolyte balance in horses.
    Freestone JF; Carlson GP; Harrold DR; Church G
    Am J Vet Res; 1988 Nov; 49(11):1899-902. PubMed ID: 3247914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Demonstration of a [K+,Cl-]-cotransport system in human red cells by its sensitivity to [(dihydroindenyl)oxy]alkanoic acids: regulation of cell swelling and distinction from the bumetanide-sensitive [Na+,K+,Cl-]-cotransport system.
    Garay RP; Nazaret C; Hannaert PA; Cragoe EJ
    Mol Pharmacol; 1988 Jun; 33(6):696-701. PubMed ID: 3380083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of concentrated electrolytes administered via a paste on fluid, electrolyte, and acid base balance in horses.
    Sosa León LA; Hodgson DR; Carlson GP; Rose RJ
    Am J Vet Res; 1998 Jul; 59(7):898-903. PubMed ID: 9659559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Furosemide-sensitive potassium efflux in cultured mouse fibroblasts.
    Jayme DW; Slayman CW; Adelberg EA
    J Cell Physiol; 1984 Jul; 120(1):41-8. PubMed ID: 6736136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of furosemide on hemorheologic alterations induced by incremental treadmill exercise in thoroughbreds.
    Weiss DJ; Geor RJ; Burger K
    Am J Vet Res; 1996 Jun; 57(6):891-5. PubMed ID: 8725819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chloride transport in red blood cells of lamprey Lampetra fluviatilis: evidence for a novel anion-exchange system.
    Bogdanova AYu ; Sherstobitov AO; Gusev GP
    J Exp Biol; 1998 Mar; 201(Pt 5):693-700. PubMed ID: 9542152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correction of hypokalemia corrects the abnormalities in erythrocyte sodium transport in Bartter's syndrome.
    Korff JM; Siebens AW; Gill JR
    J Clin Invest; 1984 Nov; 74(5):1724-9. PubMed ID: 6501567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A chemically unmasked, chloride dependent K+ transport in low K+ sheep red cells: genetic and evolutionary aspects.
    Lauf PK
    Prog Clin Biol Res; 1981; 56():13-34. PubMed ID: 7330007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of cell age and phenylhydrazine on the cation transport properties of rabbit erythrocytes.
    Brugnara C; de Franceschi L
    J Cell Physiol; 1993 Feb; 154(2):271-80. PubMed ID: 8381125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The regulation of Na-K cotransport system and essential hypertension.
    Canessa M; Brugnara C
    Klin Wochenschr; 1985; 63 Suppl 3():52-4. PubMed ID: 3999644
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human neonatal red cells. Regulatory volume response under anisotonic conditions.
    Serrani RE; Gioia IA; Corchs JL
    Arch Int Physiol Biochim Biophys; 1991 Dec; 99(6):473-7. PubMed ID: 1725753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.