These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

477 related articles for article (PubMed ID: 24532027)

  • 1. Novel therapeutic strategies for traumatic brain injury: acute antioxidant reinforcement.
    Fernández-Gajardo R; Matamala JM; Carrasco R; Gutiérrez R; Melo R; Rodrigo R
    CNS Drugs; 2014 Mar; 28(3):229-48. PubMed ID: 24532027
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Post-Injury Administration of Mitochondrial Uncouplers Increases Tissue Sparing and Improves Behavioral Outcome following Traumatic Brain Injury in Rodents.
    Pandya JD; Pauly JR; Nukala VN; Sebastian AH; Day KM; Korde AS; Maragos WF; Hall ED; Sullivan PG
    J Neurotrauma; 2007 May; 24(5):798-811. PubMed ID: 17518535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protective effects of hydrogen-rich saline in a rat model of traumatic brain injury via reducing oxidative stress.
    Ji X; Tian Y; Xie K; Liu W; Qu Y; Fei Z
    J Surg Res; 2012 Nov; 178(1):e9-16. PubMed ID: 22475349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pretreatment with tert-butylhydroquinone attenuates cerebral oxidative stress in mice after traumatic brain injury.
    Lu XY; Wang HD; Xu JG; Ding K; Li T
    J Surg Res; 2014 May; 188(1):206-12. PubMed ID: 24387843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antioxidant therapies for traumatic brain injury.
    Hall ED; Vaishnav RA; Mustafa AG
    Neurotherapeutics; 2010 Jan; 7(1):51-61. PubMed ID: 20129497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nrf2-ARE activator carnosic acid decreases mitochondrial dysfunction, oxidative damage and neuronal cytoskeletal degradation following traumatic brain injury in mice.
    Miller DM; Singh IN; Wang JA; Hall ED
    Exp Neurol; 2015 Feb; 264():103-10. PubMed ID: 25432068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidative stress and mitochondrial dysfunction following traumatic brain injury: From mechanistic view to targeted therapeutic opportunities.
    Hakiminia B; Alikiaii B; Khorvash F; Mousavi S
    Fundam Clin Pharmacol; 2022 Aug; 36(4):612-662. PubMed ID: 35118714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NADPH oxidase inhibition improves neurological outcome in experimental traumatic brain injury.
    Lu XY; Wang HD; Xu JG; Ding K; Li T
    Neurochem Int; 2014 Apr; 69():14-9. PubMed ID: 24589771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogen-rich water attenuates brain damage and inflammation after traumatic brain injury in rats.
    Tian R; Hou Z; Hao S; Wu W; Mao X; Tao X; Lu T; Liu B
    Brain Res; 2016 Apr; 1637():1-13. PubMed ID: 26826009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improvement of a Novel Proposal for Antioxidant Treatment Against Brain Damage Occurring in Ischemic Stroke Patients.
    Orellana-Urzúa S; Claps G; Rodrigo R
    CNS Neurol Disord Drug Targets; 2021; 20(1):3-21. PubMed ID: 32914724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Melatonin protects the brain from apoptosis by enhancement of autophagy after traumatic brain injury in mice.
    Ding K; Xu J; Wang H; Zhang L; Wu Y; Li T
    Neurochem Int; 2015 Dec; 91():46-54. PubMed ID: 26527380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. N-acetylcysteine and selenium modulate oxidative stress, antioxidant vitamin and cytokine values in traumatic brain injury-induced rats.
    Senol N; Nazıroğlu M; Yürüker V
    Neurochem Res; 2014 Apr; 39(4):685-92. PubMed ID: 24519543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Traumatic brain injury and mitochondrial dysfunction.
    Hiebert JB; Shen Q; Thimmesch AR; Pierce JD
    Am J Med Sci; 2015 Aug; 350(2):132-8. PubMed ID: 26083647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidative stress in traumatic brain injury.
    Rodríguez-Rodríguez A; Egea-Guerrero JJ; Murillo-Cabezas F; Carrillo-Vico A
    Curr Med Chem; 2014 Apr; 21(10):1201-11. PubMed ID: 24350853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial neuroprotection in traumatic brain injury: rationale and therapeutic strategies.
    Yokobori S; Mazzeo AT; Gajavelli S; Bullock MR
    CNS Neurol Disord Drug Targets; 2014; 13(4):606-19. PubMed ID: 24168363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent advances in the development of multifactorial therapies for the treatment of traumatic brain injury.
    Vink R; Van Den Heuvel C
    Expert Opin Investig Drugs; 2004 Oct; 13(10):1263-74. PubMed ID: 15461556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Beneficial effects of hydrogen gas in a rat model of traumatic brain injury via reducing oxidative stress.
    Ji X; Liu W; Xie K; Liu W; Qu Y; Chao X; Chen T; Zhou J; Fei Z
    Brain Res; 2010 Oct; 1354():196-205. PubMed ID: 20654594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multifunctional drugs for head injury.
    Vink R; Nimmo AJ
    Neurotherapeutics; 2009 Jan; 6(1):28-42. PubMed ID: 19110197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Melatonin antioxidative defense: therapeutical implications for aging and neurodegenerative processes.
    Pandi-Perumal SR; BaHammam AS; Brown GM; Spence DW; Bharti VK; Kaur C; Hardeland R; Cardinali DP
    Neurotox Res; 2013 Apr; 23(3):267-300. PubMed ID: 22739839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial protection after traumatic brain injury by scavenging lipid peroxyl radicals.
    Mustafa AG; Singh IN; Wang J; Carrico KM; Hall ED
    J Neurochem; 2010 Jul; 114(1):271-80. PubMed ID: 20403083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.