These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 24532172)

  • 1. SWIFT-scalable clustering for automated identification of rare cell populations in large, high-dimensional flow cytometry datasets, part 2: biological evaluation.
    Mosmann TR; Naim I; Rebhahn J; Datta S; Cavenaugh JS; Weaver JM; Sharma G
    Cytometry A; 2014 May; 85(5):422-33. PubMed ID: 24532172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SWIFT-scalable clustering for automated identification of rare cell populations in large, high-dimensional flow cytometry datasets, part 1: algorithm design.
    Naim I; Datta S; Rebhahn J; Cavenaugh JS; Mosmann TR; Sharma G
    Cytometry A; 2014 May; 85(5):408-21. PubMed ID: 24677621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Competitive SWIFT cluster templates enhance detection of aging changes.
    Rebhahn JA; Roumanes DR; Qi Y; Khan A; Thakar J; Rosenberg A; Lee FE; Quataert SA; Sharma G; Mosmann TR
    Cytometry A; 2016 Jan; 89(1):59-70. PubMed ID: 26441030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. immunoClust--An automated analysis pipeline for the identification of immunophenotypic signatures in high-dimensional cytometric datasets.
    Sörensen T; Baumgart S; Durek P; Grützkau A; Häupl T
    Cytometry A; 2015 Jul; 87(7):603-15. PubMed ID: 25850678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and visualization of multidimensional antigen-specific T-cell populations in polychromatic cytometry data.
    Lin L; Frelinger J; Jiang W; Finak G; Seshadri C; Bart PA; Pantaleo G; McElrath J; DeRosa S; Gottardo R
    Cytometry A; 2015 Jul; 87(7):675-82. PubMed ID: 25908275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling of inter-sample variation in flow cytometric data with the joint clustering and matching procedure.
    Lee SX; McLachlan GJ; Pyne S
    Cytometry A; 2016 Jan; 89(1):30-43. PubMed ID: 26492316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of clustering methods for high-dimensional single-cell flow and mass cytometry data.
    Weber LM; Robinson MD
    Cytometry A; 2016 Dec; 89(12):1084-1096. PubMed ID: 27992111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Misty Mountain clustering: application to fast unsupervised flow cytometry gating.
    Sugár IP; Sealfon SC
    BMC Bioinformatics; 2010 Oct; 11():502. PubMed ID: 20932336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Data reduction for spectral clustering to analyze high throughput flow cytometry data.
    Zare H; Shooshtari P; Gupta A; Brinkman RR
    BMC Bioinformatics; 2010 Jul; 11():403. PubMed ID: 20667133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feature-guided clustering of multi-dimensional flow cytometry datasets.
    Zeng QT; Pratt JP; Pak J; Ravnic D; Huss H; Mentzer SJ
    J Biomed Inform; 2007 Jun; 40(3):325-31. PubMed ID: 16901761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated gating of flow cytometry data via robust model-based clustering.
    Lo K; Brinkman RR; Gottardo R
    Cytometry A; 2008 Apr; 73(4):321-32. PubMed ID: 18307272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated identification of stratifying signatures in cellular subpopulations.
    Bruggner RV; Bodenmiller B; Dill DL; Tibshirani RJ; Nolan GP
    Proc Natl Acad Sci U S A; 2014 Jul; 111(26):E2770-7. PubMed ID: 24979804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DAFi: A directed recursive data filtering and clustering approach for improving and interpreting data clustering identification of cell populations from polychromatic flow cytometry data.
    Lee AJ; Chang I; Burel JG; Lindestam Arlehamn CS; Mandava A; Weiskopf D; Peters B; Sette A; Scheuermann RH; Qian Y
    Cytometry A; 2018 Jun; 93(6):597-610. PubMed ID: 29665244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SwiftReg cluster registration automatically reduces flow cytometry data variability including batch effects.
    Rebhahn JA; Quataert SA; Sharma G; Mosmann TR
    Commun Biol; 2020 May; 3(1):218. PubMed ID: 32382076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of Automated Flow Cytometry Data Analysis Tools within Cell and Gene Therapy Manufacturing.
    Cheung M; Campbell JJ; Thomas RJ; Braybrook J; Petzing J
    Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated Analysis of Flow Cytometry Data to Reduce Inter-Lab Variation in the Detection of Major Histocompatibility Complex Multimer-Binding T Cells.
    Pedersen NW; Chandran PA; Qian Y; Rebhahn J; Petersen NV; Hoff MD; White S; Lee AJ; Stanton R; Halgreen C; Jakobsen K; Mosmann T; Gouttefangeas C; Chan C; Scheuermann RH; Hadrup SR
    Front Immunol; 2017; 8():858. PubMed ID: 28798746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scalable clustering algorithms for continuous environmental flow cytometry.
    Hyrkas J; Clayton S; Ribalet F; Halperin D; Armbrust EV; Howe B
    Bioinformatics; 2016 Feb; 32(3):417-23. PubMed ID: 26476780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A benchmark for evaluation of algorithms for identification of cellular correlates of clinical outcomes.
    Aghaeepour N; Chattopadhyay P; Chikina M; Dhaene T; Van Gassen S; Kursa M; Lambrecht BN; Malek M; McLachlan GJ; Qian Y; Qiu P; Saeys Y; Stanton R; Tong D; Vens C; Walkowiak S; Wang K; Finak G; Gottardo R; Mosmann T; Nolan GP; Scheuermann RH; Brinkman RR
    Cytometry A; 2016 Jan; 89(1):16-21. PubMed ID: 26447924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elucidation of seventeen human peripheral blood B-cell subsets and quantification of the tetanus response using a density-based method for the automated identification of cell populations in multidimensional flow cytometry data.
    Qian Y; Wei C; Eun-Hyung Lee F; Campbell J; Halliley J; Lee JA; Cai J; Kong YM; Sadat E; Thomson E; Dunn P; Seegmiller AC; Karandikar NJ; Tipton CM; Mosmann T; Sanz I; Scheuermann RH
    Cytometry B Clin Cytom; 2010; 78 Suppl 1(Suppl 1):S69-82. PubMed ID: 20839340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unfold High-Dimensional Clouds for Exhaustive Gating of Flow Cytometry Data.
    Qiu P
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(6):1045-51. PubMed ID: 26357042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.