These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 2453274)

  • 1. Role of nucleotide hydrolysis in the polymerization of actin and tubulin.
    Carlier MF
    Cell Biophys; 1988; 12():105-17. PubMed ID: 2453274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nucleotide hydrolysis regulates the dynamics of actin filaments and microtubules.
    Carlier MF
    Philos Trans R Soc Lond B Biol Sci; 1992 Apr; 336(1276):93-7. PubMed ID: 1351301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous monitoring of Pi release following nucleotide hydrolysis in actin or tubulin assembly using 2-amino-6-mercapto-7-methylpurine ribonucleoside and purine-nucleoside phosphorylase as an enzyme-linked assay.
    Melki R; Fievez S; Carlier MF
    Biochemistry; 1996 Sep; 35(37):12038-45. PubMed ID: 8810908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Actin polymerization: regulation by divalent metal ion and nucleotide binding, ATP hydrolysis and binding of myosin.
    Carlier MF; Valentin-Ranc C; Combeau C; Fievez S; Pantoloni D
    Adv Exp Med Biol; 1994; 358():71-81. PubMed ID: 7801813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of nucleotide hydrolysis in the dynamics of actin filaments and microtubules.
    Carlier MF
    Int Rev Cytol; 1989; 115():139-70. PubMed ID: 2663760
    [No Abstract]   [Full Text] [Related]  

  • 6. Mechanism of GTP hydrolysis in tubulin polymerization: characterization of the kinetic intermediate microtubule-GDP-Pi using phosphate analogues.
    Carlier MF; Didry D; Simon C; Pantaloni D
    Biochemistry; 1989 Feb; 28(4):1783-91. PubMed ID: 2719934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Actin polymerization and ATP hydrolysis.
    Carlier MF
    Adv Biophys; 1990; 26():51-73. PubMed ID: 2082729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural plasticity in actin and tubulin polymer dynamics.
    Kueh HY; Mitchison TJ
    Science; 2009 Aug; 325(5943):960-3. PubMed ID: 19696342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleotide hydrolysis in cytoskeletal assembly.
    Carlier MF
    Curr Opin Cell Biol; 1991 Feb; 3(1):12-7. PubMed ID: 1854475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Invited review: the role of nucleotide triphosphate in actin and tubulin assembly and function.
    Weisenberg RC
    Cell Motil; 1981; 1(4):485-97. PubMed ID: 6756643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of actin filaments with microtubules is mediated by microtubule-associated proteins and regulated by phosphorylation.
    Selden SC; Pollard TD
    Ann N Y Acad Sci; 1986; 466():803-12. PubMed ID: 3460455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diverse cytomotive actins and tubulins share a polymerization switch mechanism conferring robust dynamics.
    Wagstaff JM; Planelles-Herrero VJ; Sharov G; Alnami A; Kozielski F; Derivery E; Löwe J
    Sci Adv; 2023 Mar; 9(13):eadf3021. PubMed ID: 36989372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implications of treadmilling for the stability and polarity of actin and tubulin polymers in vivo.
    Kirschner MW
    J Cell Biol; 1980 Jul; 86(1):330-4. PubMed ID: 6893454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Na+/Pi co-transport alters rapidly cytoskeletal protein polymerization dynamics in opossum kidney cells.
    Papakonstanti EA; Emmanouel DS; Gravanis A; Stournaras C
    Biochem J; 1996 Apr; 315 ( Pt 1)(Pt 1):241-7. PubMed ID: 8670113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioenergetic aspects and polymer length distribution in steady-state head-to-tail polymerization of actin or microtubules.
    Hill TL
    Proc Natl Acad Sci U S A; 1980 Aug; 77(8):4803-7. PubMed ID: 6933529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compressive and Tensile Deformations Alter ATP Hydrolysis and Phosphate Release Rates in Actin Filaments.
    Mani S; Katkar HH; Voth GA
    J Chem Theory Comput; 2021 Mar; 17(3):1900-1913. PubMed ID: 33596075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Actin polymerization and ATP hydrolysis.
    Korn ED; Carlier MF; Pantaloni D
    Science; 1987 Oct; 238(4827):638-44. PubMed ID: 3672117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomic view into Plasmodium actin polymerization, ATP hydrolysis, and fragmentation.
    Kumpula EP; Lopez AJ; Tajedin L; Han H; Kursula I
    PLoS Biol; 2019 Jun; 17(6):e3000315. PubMed ID: 31199804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphate release during microtubule assembly: what stabilizes growing microtubules?
    Vandecandelaere A; Brune M; Webb MR; Martin SR; Bayley PM
    Biochemistry; 1999 Jun; 38(25):8179-88. PubMed ID: 10387063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions of microtubule-associated protein MAP2 with unpolymerized and polymerized tubulin and actin using a 96-well microtiter plate solid-phase immunoassay.
    Pedrotti B; Colombo R; Islam K
    Biochemistry; 1994 Jul; 33(29):8798-806. PubMed ID: 8038171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.