BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

364 related articles for article (PubMed ID: 24532793)

  • 1. The steric gate of DNA polymerase ι regulates ribonucleotide incorporation and deoxyribonucleotide fidelity.
    Donigan KA; McLenigan MP; Yang W; Goodman MF; Woodgate R
    J Biol Chem; 2014 Mar; 289(13):9136-45. PubMed ID: 24532793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unlocking the steric gate of DNA polymerase η leads to increased genomic instability in Saccharomyces cerevisiae.
    Donigan KA; Cerritelli SM; McDonald JP; Vaisman A; Crouch RJ; Woodgate R
    DNA Repair (Amst); 2015 Nov; 35():1-12. PubMed ID: 26340535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Roles of the active site residues and metal cofactors in noncanonical base-pairing during catalysis by human DNA polymerase iota.
    Makarova AV; Ignatov A; Miropolskaya N; Kulbachinskiy A
    DNA Repair (Amst); 2014 Oct; 22():67-76. PubMed ID: 25108837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of human DNA polymerase iota and the mechanism of DNA synthesis.
    Makarova AV; Kulbachinskiy AV
    Biochemistry (Mosc); 2012 Jun; 77(6):547-61. PubMed ID: 22817454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochemical analysis of six genetic variants of error-prone human DNA polymerase ι involved in translesion DNA synthesis.
    Kim J; Song I; Jo A; Shin JH; Cho H; Eoff RL; Guengerich FP; Choi JY
    Chem Res Toxicol; 2014 Oct; 27(10):1837-52. PubMed ID: 25162224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preferential incorporation of G opposite template T by the low-fidelity human DNA polymerase iota.
    Zhang Y; Yuan F; Wu X; Wang Z
    Mol Cell Biol; 2000 Oct; 20(19):7099-108. PubMed ID: 10982826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Escherichia coli UmuC active site mutants: effects on translesion DNA synthesis, mutagenesis and cell survival.
    Kuban W; Vaisman A; McDonald JP; Karata K; Yang W; Goodman MF; Woodgate R
    DNA Repair (Amst); 2012 Sep; 11(9):726-32. PubMed ID: 22784977
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Eukaryotic polymerases iota and zeta act sequentially to bypass DNA lesions.
    Johnson RE; Washington MT; Haracska L; Prakash S; Prakash L
    Nature; 2000 Aug; 406(6799):1015-9. PubMed ID: 10984059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA Polymerase and dRP-lyase activities of polymorphic variants of human Pol ι.
    Shilkin ES; Gromova AS; Smal MP; Makarova AV
    Biochem J; 2021 Apr; 478(7):1399-1412. PubMed ID: 33600564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic analysis of base-pairing preference for nucleotide incorporation opposite template pyrimidines by human DNA polymerase iota.
    Choi JY; Lim S; Eoff RL; Guengerich FP
    J Mol Biol; 2009 Jun; 389(2):264-74. PubMed ID: 19376129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Steric gate residues of Y-family DNA polymerases DinB and pol kappa are crucial for dNTP-induced conformational change.
    Nevin P; Engen JR; Beuning PJ
    DNA Repair (Amst); 2015 May; 29():65-73. PubMed ID: 25684709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequence context-dependent replication of DNA templates containing UV-induced lesions by human DNA polymerase iota.
    Vaisman A; Frank EG; Iwai S; Ohashi E; Ohmori H; Hanaoka F; Woodgate R
    DNA Repair (Amst); 2003 Sep; 2(9):991-1006. PubMed ID: 12967656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human DNA polymerase iota utilizes different nucleotide incorporation mechanisms dependent upon the template base.
    Washington MT; Johnson RE; Prakash L; Prakash S
    Mol Cell Biol; 2004 Jan; 24(2):936-43. PubMed ID: 14701763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochemical evidence for the requirement of Hoogsteen base pairing for replication by human DNA polymerase iota.
    Johnson RE; Prakash L; Prakash S
    Proc Natl Acad Sci U S A; 2005 Jul; 102(30):10466-71. PubMed ID: 16014707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural accommodation of ribonucleotide incorporation by the DNA repair enzyme polymerase Mu.
    Moon AF; Pryor JM; Ramsden DA; Kunkel TA; Bebenek K; Pedersen LC
    Nucleic Acids Res; 2017 Sep; 45(15):9138-9148. PubMed ID: 28911097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Critical amino acids in Escherichia coli UmuC responsible for sugar discrimination and base-substitution fidelity.
    Vaisman A; Kuban W; McDonald JP; Karata K; Yang W; Goodman MF; Woodgate R
    Nucleic Acids Res; 2012 Jul; 40(13):6144-57. PubMed ID: 22422840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of Ribonucleotide Incorporation by Human DNA Polymerase η.
    Su Y; Egli M; Guengerich FP
    J Biol Chem; 2016 Feb; 291(8):3747-56. PubMed ID: 26740629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ribonucleotide discrimination by translesion synthesis DNA polymerases.
    Vaisman A; Woodgate R
    Crit Rev Biochem Mol Biol; 2018 Aug; 53(4):382-402. PubMed ID: 29972306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A sensor complements the steric gate when DNA polymerase ϵ discriminates ribonucleotides.
    Parkash V; Kulkarni Y; Bylund GO; Osterman P; Kamerlin SCL; Johansson E
    Nucleic Acids Res; 2023 Nov; 51(20):11225-11238. PubMed ID: 37819038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of hoogsteen edge hydrogen bonding at template purines in nucleotide incorporation by human DNA polymerase iota.
    Johnson RE; Haracska L; Prakash L; Prakash S
    Mol Cell Biol; 2006 Sep; 26(17):6435-41. PubMed ID: 16914729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.