These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 2453290)

  • 1. Antisense RNA inhibits expression of membrane skeleton protein 4.1 during embryonic development of Xenopus.
    Giebelhaus DH; Eib DW; Moon RT
    Cell; 1988 May; 53(4):601-15. PubMed ID: 2453290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane skeleton protein 4.1 in developing Xenopus: expression in postmitotic cells of the retina.
    Spencer M; Giebelhaus DH; Kelly GM; Bicknell J; Florio SK; Milam AH; Moon RT
    Dev Biol; 1990 Jun; 139(2):279-91. PubMed ID: 2186944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antisense RNA injections in fertilized frog eggs reveal an RNA duplex unwinding activity.
    Rebagliati MR; Melton DA
    Cell; 1987 Feb; 48(4):599-605. PubMed ID: 2434240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of a calcium-dependent calmodulin-binding domain in Xenopus membrane skeleton protein 4.1.
    Kelly GM; Zelus BD; Moon RT
    J Biol Chem; 1991 Jul; 266(19):12469-73. PubMed ID: 2061322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in the expression of alpha-fodrin during embryonic development of Xenopus laevis.
    Giebelhaus DH; Zelus BD; Henchman SK; Moon RT
    J Cell Biol; 1987 Aug; 105(2):843-53. PubMed ID: 3040772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cloning and characterization of a secreted frizzled-related protein that is expressed by the retinal pigment epithelium.
    Chang JT; Esumi N; Moore K; Li Y; Zhang S; Chew C; Goodman B; Rattner A; Moody S; Stetten G; Campochiaro PA; Zack DJ
    Hum Mol Genet; 1999 Apr; 8(4):575-83. PubMed ID: 10072424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overexpression of wild-type p53 interferes with normal development in Xenopus laevis embryos.
    Hoever M; Clement JH; Wedlich D; Montenarh M; Knöchel W
    Oncogene; 1994 Jan; 9(1):109-20. PubMed ID: 8302570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The primary structure of the larval beta 1-globin gene of Xenopus laevis and its flanking regions.
    Meyerhof W; Klinger-Mitropoulos S; Stalder J; Weber R; Knöchel W
    Nucleic Acids Res; 1984 Oct; 12(20):7705-19. PubMed ID: 6093050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequence and developmental expression of mRNA coding for a gap junction protein in Xenopus.
    Gimlich RL; Kumar NM; Gilula NB
    J Cell Biol; 1988 Sep; 107(3):1065-73. PubMed ID: 2843548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of photoreceptor cell fate by the sevenless protein requires a functional tyrosine kinase domain.
    Basler K; Hafen E
    Cell; 1988 Jul; 54(3):299-311. PubMed ID: 2840202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The origin of the rRNA precursor from Xenopus borealis, analysed in vivo and in vitro.
    McStay B; Bird A
    Nucleic Acids Res; 1983 Dec; 11(23):8167-81. PubMed ID: 6324076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of exogenous mRNA in Xenopus laevis embryos for the study of cell cycle regulation.
    Sible JC; Wroble BN
    Methods Mol Biol; 2009; 518():1-15. PubMed ID: 19085142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of 4-8S RNA transcription at the midblastula transition in Xenopus laevis embryos.
    Lund E; Dahlberg JE
    Genes Dev; 1992 Jun; 6(6):1097-106. PubMed ID: 1592258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Primary structure of an apical protein from Xenopus laevis that participates in amiloride-sensitive sodium channel activity.
    Staub O; Verrey F; Kleyman TR; Benos DJ; Rossier BC; Kraehenbuhl JP
    J Cell Biol; 1992 Dec; 119(6):1497-506. PubMed ID: 1334959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activin receptor mRNA is expressed early in Xenopus embryogenesis and the level of the expression affects the body axis formation.
    Kondo M; Tashiro K; Fujii G; Asano M; Miyoshi R; Yamada R; Muramatsu M; Shiokawa K
    Biochem Biophys Res Commun; 1991 Dec; 181(2):684-90. PubMed ID: 1661587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Processing of naturally occurring sense/antisense transcripts of the vertebrate Slc34a gene into short RNAs.
    Carlile M; Nalbant P; Preston-Fayers K; McHaffie GS; Werner A
    Physiol Genomics; 2008 Jun; 34(1):95-100. PubMed ID: 18413783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accurate transcription of cloned Xenopus rRNA genes by RNA polymerase I: demonstration by S1 nuclease mapping.
    Sollner-Webb B; McKnight SL
    Nucleic Acids Res; 1982 Jun; 10(11):3391-405. PubMed ID: 6285299
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PCNA mRNA has a 3'UTR antisense to yellow crescent RNA and is localized in ascidian eggs and embryos.
    Swalla BJ; Jeffery WR
    Dev Biol; 1996 Aug; 178(1):23-34. PubMed ID: 8812106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Primary structure of Torpedo marmorata chloride channel isolated by expression cloning in Xenopus oocytes.
    Jentsch TJ; Steinmeyer K; Schwarz G
    Nature; 1990 Dec; 348(6301):510-4. PubMed ID: 2174129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. cis-acting sequences and trans-acting factors required for constitutive expression of a microinjected HSP70 gene after the midblastula transition of Xenopus laevis embryogenesis.
    Ovsenek N; Williams GT; Morimoto RI; Heikkila JJ
    Dev Genet; 1990; 11(1):97-109. PubMed ID: 2361336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.