These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
354 related articles for article (PubMed ID: 24533460)
1. Genome-wide association and systems genetic analyses of residual feed intake, daily feed consumption, backfat and weight gain in pigs. Do DN; Ostersen T; Strathe AB; Mark T; Jensen J; Kadarmideen HN BMC Genet; 2014 Feb; 15():27. PubMed ID: 24533460 [TBL] [Abstract][Full Text] [Related]
2. Genetic parameters for different measures of feed efficiency and related traits in boars of three pig breeds. Do DN; Strathe AB; Jensen J; Mark T; Kadarmideen HN J Anim Sci; 2013 Sep; 91(9):4069-79. PubMed ID: 23825329 [TBL] [Abstract][Full Text] [Related]
3. Genome-wide association study reveals genetic architecture of eating behavior in pigs and its implications for humans obesity by comparative mapping. Do DN; Strathe AB; Ostersen T; Jensen J; Mark T; Kadarmideen HN PLoS One; 2013; 8(8):e71509. PubMed ID: 23977060 [TBL] [Abstract][Full Text] [Related]
4. Genetic parameters for production traits and measures of residual feed intake in large white swine. Johnson ZB; Chewning JJ; Nugent RA J Anim Sci; 1999 Jul; 77(7):1679-85. PubMed ID: 10438012 [TBL] [Abstract][Full Text] [Related]
5. Genome-wide association and pathway analysis of feed efficiency in pigs reveal candidate genes and pathways for residual feed intake. Do DN; Strathe AB; Ostersen T; Pant SD; Kadarmideen HN Front Genet; 2014; 5():307. PubMed ID: 25250046 [TBL] [Abstract][Full Text] [Related]
6. Feed intake, average daily gain, feed efficiency, and real-time ultrasound traits in Duroc pigs: II. Genomewide association. Jiao S; Maltecca C; Gray KA; Cassady JP J Anim Sci; 2014 Jul; 92(7):2846-60. PubMed ID: 24962532 [TBL] [Abstract][Full Text] [Related]
7. Whole Genome Association Studies of Residual Feed Intake and Related Traits in the Pig. Onteru SK; Gorbach DM; Young JM; Garrick DJ; Dekkers JC; Rothschild MF PLoS One; 2013; 8(6):e61756. PubMed ID: 23840294 [TBL] [Abstract][Full Text] [Related]
8. Genetic parameters for residual feed intake in growing pigs, with emphasis on genetic relationships with carcass and meat quality traits. Gilbert H; Bidanel JP; Gruand J; Caritez JC; Billon Y; Guillouet P; Lagant H; Noblet J; Sellier P J Anim Sci; 2007 Dec; 85(12):3182-8. PubMed ID: 17785600 [TBL] [Abstract][Full Text] [Related]
9. Genome-wide association analysis of residual feed intake in Junmu No. 1 White pigs. Bai C; Pan Y; Wang D; Cai F; Yan S; Zhao Z; Sun B Anim Genet; 2017 Dec; 48(6):686-690. PubMed ID: 29076177 [TBL] [Abstract][Full Text] [Related]
10. Random Forests approach for identifying additive and epistatic single nucleotide polymorphisms associated with residual feed intake in dairy cattle. Yao C; Spurlock DM; Armentano LE; Page CD; VandeHaar MJ; Bickhart DM; Weigel KA J Dairy Sci; 2013 Oct; 96(10):6716-29. PubMed ID: 23932129 [TBL] [Abstract][Full Text] [Related]
12. Identification of genomic regions associated with feed efficiency in Nelore cattle. de Oliveira PS; Cesar AS; do Nascimento ML; Chaves AS; Tizioto PC; Tullio RR; Lanna DP; Rosa AN; Sonstegard TS; Mourao GB; Reecy JM; Garrick DJ; Mudadu MA; Coutinho LL; Regitano LC BMC Genet; 2014 Sep; 15():100. PubMed ID: 25257854 [TBL] [Abstract][Full Text] [Related]
13. Identification of polymorphisms influencing feed intake and efficiency in beef cattle. Sherman EL; Nkrumah JD; Murdoch BM; Moore SS Anim Genet; 2008 Jun; 39(3):225-31. PubMed ID: 18318789 [TBL] [Abstract][Full Text] [Related]
14. Combination analysis of genome-wide association and transcriptome sequencing of residual feed intake in quality chickens. Xu Z; Ji C; Zhang Y; Zhang Z; Nie Q; Xu J; Zhang D; Zhang X BMC Genomics; 2016 Aug; 17():594. PubMed ID: 27506765 [TBL] [Abstract][Full Text] [Related]
15. A genomewide association study of feed efficiency and feeding behaviors at two fattening stages in a White Duroc × Erhualian F population. Guo YM; Zhang ZY; Ma JW; Ai HS; Ren J; Huang LS J Anim Sci; 2015 Apr; 93(4):1481-9. PubMed ID: 26020169 [TBL] [Abstract][Full Text] [Related]
16. Genome-wide association studies for feed intake and efficiency in two laying periods of chickens. Yuan J; Wang K; Yi G; Ma M; Dou T; Sun C; Qu LJ; Shen M; Qu L; Yang N Genet Sel Evol; 2015 Oct; 47():82. PubMed ID: 26475174 [TBL] [Abstract][Full Text] [Related]
17. A genome-wide association study of production traits in a commercial population of Large White pigs: evidence of haplotypes affecting meat quality. Sanchez MP; Tribout T; Iannuccelli N; Bouffaud M; Servin B; Tenghe A; Dehais P; Muller N; Del Schneider MP; Mercat MJ; Rogel-Gaillard C; Milan D; Bidanel JP; Gilbert H Genet Sel Evol; 2014 Feb; 46(1):12. PubMed ID: 24528607 [TBL] [Abstract][Full Text] [Related]
18. Identification of genomic regions affecting production traits in pigs divergently selected for feed efficiency. Delpuech E; Aliakbari A; Labrune Y; Fève K; Billon Y; Gilbert H; Riquet J Genet Sel Evol; 2021 Jun; 53(1):49. PubMed ID: 34126920 [TBL] [Abstract][Full Text] [Related]
19. Genetic Architecture of Feeding Behavior and Feed Efficiency in a Duroc Pig Population. Ding R; Yang M; Wang X; Quan J; Zhuang Z; Zhou S; Li S; Xu Z; Zheng E; Cai G; Liu D; Huang W; Yang J; Wu Z Front Genet; 2018; 9():220. PubMed ID: 29971093 [TBL] [Abstract][Full Text] [Related]
20. Impact of multi-output and stacking methods on feed efficiency prediction from genotype using machine learning algorithms. Mora M; González P; Quevedo JR; Montañés E; Tusell L; Bergsma R; Piles M J Anim Breed Genet; 2023 Nov; 140(6):638-652. PubMed ID: 37403756 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]