These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 24533909)

  • 1. Modeling the optical properties of bowtie antenna generated by self-assembled ag triangular nanoprisms.
    Rosen DA; Tao AR
    ACS Appl Mater Interfaces; 2014 Mar; 6(6):4134-42. PubMed ID: 24533909
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complementary bowtie aperture for localizing and enhancing optical magnetic field.
    Zhou N; Kinzel EC; Xu X
    Opt Lett; 2011 Aug; 36(15):2764-6. PubMed ID: 21808305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Infrared optical properties of nanoantenna dimers with photochemically narrowed gaps in the 5 nm regime.
    Neubrech F; Weber D; Katzmann J; Huck C; Toma A; Di Fabrizio E; Pucci A; Härtling T
    ACS Nano; 2012 Aug; 6(8):7326-32. PubMed ID: 22804706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmonic Enhancement of Dye Sensitized Solar Cells in the Red-to-near-Infrared Region using Triangular Core-Shell Ag@SiO2 Nanoparticles.
    Gangishetty MK; Lee KE; Scott RW; Kelly TL
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):11044-51. PubMed ID: 24102234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmonic bar-coupled dots-on-pillar cavity antenna with dual resonances for infrared absorption and sensing: performance and nanoimprint fabrication.
    Wang C; Zhang Q; Song Y; Chou SY
    ACS Nano; 2014 Mar; 8(3):2618-24. PubMed ID: 24552132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bottom-up assembly of colloidal gold and silver nanostructures for designable plasmonic structures and metamaterials.
    Gwo S; Lin MH; He CL; Chen HY; Teranishi T
    Langmuir; 2012 Jun; 28(24):8902-8. PubMed ID: 22372768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Near-field spatial mapping of strongly interacting multiple plasmonic infrared antennas.
    Grefe SE; Leiva D; Mastel S; Dhuey SD; Cabrini S; Schuck PJ; Abate Y
    Phys Chem Chem Phys; 2013 Nov; 15(43):18944-50. PubMed ID: 24097054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-assembled photonic structure: a Ga optical antenna on GaP nanowires.
    Kuznetsov A; Roy P; Grudinin DV; Kondratev VM; Kadinskaya SA; Vorobyev AA; Kotlyar KP; Ubyivovk EV; Fedorov VV; Cirlin GE; Mukhin IS; Arsenin AV; Volkov VS; Bolshakov AD
    Nanoscale; 2023 Feb; 15(5):2332-2339. PubMed ID: 36637064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear absorption tuning by composition control in bimetallic plasmonic nanoprism arrays.
    Cesca T; Michieli N; Kalinic B; Sánchez-Espinoza A; Rattin M; Russo V; Mattarello V; Scian C; Mazzoldi P; Mattei G
    Nanoscale; 2015 Aug; 7(29):12411-8. PubMed ID: 26129696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy.
    Aksu S; Yanik AA; Adato R; Artar A; Huang M; Altug H
    Nano Lett; 2010 Jul; 10(7):2511-8. PubMed ID: 20560536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of the rotation angle on surface plasmon coupling of nanoprisms.
    Chien MH; Nien LW; Chao BK; Li JH; Hsueh CH
    Nanoscale; 2016 Feb; 8(6):3660-70. PubMed ID: 26809737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoscale plasmonic contour bowtie antenna operating in the mid-infrared.
    Sederberg S; Elezzabi AY
    Opt Express; 2011 Aug; 19(16):15532-7. PubMed ID: 21934916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dipole plasmon resonance induced large third-order optical nonlinearity of Au triangular nanoprism in infrared region.
    Chen Z; Dai H; Liu J; Xu H; Li Z; Zhou ZK; Han JB
    Opt Express; 2013 Jul; 21(15):17568-75. PubMed ID: 23938629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmonic antenna effects on photochemical reactions.
    Gao S; Ueno K; Misawa H
    Acc Chem Res; 2011 Apr; 44(4):251-60. PubMed ID: 21381706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Near and Far-Field Properties of Nanoprisms with Rounded Edges.
    Grześkiewicz B; Ptaszyński K; Kotkowiak M
    Plasmonics; 2014; 9(3):607-614. PubMed ID: 24834020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bowtie plasmonic quantum cascade laser antenna.
    Yu N; Cubukcu E; Diehl L; Bour D; Corzine S; Zhu J; Höfler G; Crozier KB; Capasso F
    Opt Express; 2007 Oct; 15(20):13272-81. PubMed ID: 19550597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sierpiński fractal plasmonic antenna: a fractal abstraction of the plasmonic bowtie antenna.
    Sederberg S; Elezzabi AY
    Opt Express; 2011 May; 19(11):10456-61. PubMed ID: 21643300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneously tuning the electric and magnetic plasmonic response using capped bi-metallic nanoantennas.
    Roxworthy BJ; Toussaint KC
    Nanoscale; 2014 Feb; 6(4):2270-4. PubMed ID: 24407278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Localized Surface Plasmon Resonance Dependence on Misaligned Truncated Ag Nanoprism Dimer.
    Yang H; Owiti EO; Jiang X; Li S; Liu P; Sun X
    Nanoscale Res Lett; 2017 Dec; 12(1):430. PubMed ID: 28673049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.