BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

48 related articles for article (PubMed ID: 24533931)

  • 1. DNA hydrogel as a template for synthesis of ultrasmall gold nanoparticles for catalytic applications.
    Zinchenko A; Miwa Y; Lopatina LI; Sergeyev VG; Murata S
    ACS Appl Mater Interfaces; 2014 Mar; 6(5):3226-32. PubMed ID: 24533931
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling
    Loskarn M; Harumain ZAS; Dobson JA; Hunt AJ; McElroy CR; Klumbys E; Johnston E; Sanchez Alponti J; Clark JH; Maathuis FJM; Bruce NC; Rylott EL
    Environ Sci Technol; 2024 Jun; 58(22):9714-9722. PubMed ID: 38780409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gold nanocatalysts supported on carbon for electrocatalytic oxidation of organic molecules including guanines in DNA.
    Chang Z; Yang Y; He J; Rusling JF
    Dalton Trans; 2018 Oct; 47(40):14139-14152. PubMed ID: 30066010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graphdiyne bearing pillar[5]arene-reduced Au nanoparticles for enhanced catalytic performance towards the reduction of 4-nitrophenol and methylene blue.
    Tan X; Xu J; Huang T; Wang S; Yuan M; Zhao G
    RSC Adv; 2019 Nov; 9(66):38372-38380. PubMed ID: 35540210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and Organization of Gold-Peptide Nanoparticles for Catalytic Activities.
    Abbas M; Susapto HH; Hauser CAE
    ACS Omega; 2022 Jan; 7(2):2082-2090. PubMed ID: 35071896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biodegradable Gold Nanoclusters with Improved Excretion Due to pH-Triggered Hydrophobic-to-Hydrophilic Transition.
    Higbee-Dempsey EM; Amirshaghaghi A; Case MJ; Bouché M; Kim J; Cormode DP; Tsourkas A
    J Am Chem Soc; 2020 Apr; 142(17):7783-7794. PubMed ID: 32271558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Truly-Biocompatible Gold Catalysis Enables Vivo-Orthogonal Intra-CNS Release of Anxiolytics.
    Ortega-Liebana MC; Porter NJ; Adam C; Valero T; Hamilton L; Sieger D; Becker CG; Unciti-Broceta A
    Angew Chem Int Ed Engl; 2022 Jan; 61(1):e202111461. PubMed ID: 34730266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of Prolate-Shaped Au Nanoparticles and Au Nanoprisms and Study of Catalytic Reduction Reactions of 4-Nitrophenol.
    Park SI; Song HM
    ACS Omega; 2019 Apr; 4(4):7874-7883. PubMed ID: 31459874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iron-Based Redox Polymerization of Acrylic Acid for Direct Synthesis of Hydrogel/Membranes, and Metal Nanoparticles for Water Treatment.
    Hernández S; Papp JK; Bhattacharyya D
    Ind Eng Chem Res; 2014 Jan; 53(3):1130-1142. PubMed ID: 24954975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A partial oxidation-based approach to the synthesis of gold-magnetite hybrid nanostructures.
    Ochea RAG; Benzaquén TB; Encina ER
    Sci Rep; 2024 Mar; 14(1):7352. PubMed ID: 38548867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Truly-Biocompatible Gold Catalysis Enables Vivo-Orthogonal Intra-CNS Release of Anxiolytics.
    Ortega-Liebana MC; Porter NJ; Adam C; Valero T; Hamilton L; Sieger D; Becker CG; Unciti-Broceta A
    Angew Chem Weinheim Bergstr Ger; 2022 Jan; 134(1):e202111461. PubMed ID: 38505566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA hydrogel by multicomponent assembly for encapsulation and killing of cells.
    Hu R; Yuan H; Wang B; Liu L; Lv F; Wang S
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):11823-8. PubMed ID: 24955754
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving DNA nanostructure stability: A review of the biomedical applications and approaches.
    Nasiri M; Bahadorani M; Dellinger K; Aravamudhan S; Vivero-Escoto JL; Zadegan R
    Int J Biol Macromol; 2024 Mar; 260(Pt 1):129495. PubMed ID: 38228209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomass RNA for the Controlled Synthesis of Degradable Networks by Radical Polymerization.
    Jeong J; An SY; Hu X; Zhao Y; Yin R; Szczepaniak G; Murata H; Das SR; Matyjaszewski K
    ACS Nano; 2023 Nov; 17(21):21912-21922. PubMed ID: 37851525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent developments in hydrogels containing copper and palladium for the catalytic reduction/degradation of organic pollutants.
    Dadashi J; Ghasemzadeh MA; Salavati-Niasari M
    RSC Adv; 2022 Aug; 12(36):23481-23502. PubMed ID: 36090397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA Nanotechnology-Enabled Fabrication of Metal Nanomorphology.
    Xie M; Hu Y; Yin J; Zhao Z; Chen J; Chao J
    Research (Wash D C); 2022; 2022():9840131. PubMed ID: 35935136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioinspired interconnected hydrogel capsules for enhanced catalysis.
    Chen J; Li M; Hong W; Xia Y; Lin J; Chen X
    RSC Adv; 2018 Nov; 8(65):37050-37056. PubMed ID: 35557824
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Dursun S; Yavuz E; Çetinkaya Z
    RSC Adv; 2019 Nov; 9(66):38538-38546. PubMed ID: 35540227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mussel-inspired immobilization of Au on bare and graphene-wrapped Ni nanoparticles toward highly efficient and easily recyclable catalysts.
    Mahnaz F; Mostafa-Al-Momin M; Rubel M; Ferdous M; Azam MS
    RSC Adv; 2019 Sep; 9(52):30358-30369. PubMed ID: 35530224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Smart and Functionalized Development of Nucleic Acid-Based Hydrogels: Assembly Strategies, Recent Advances, and Challenges.
    Zhang Y; Zhu L; Tian J; Zhu L; Ma X; He X; Huang K; Ren F; Xu W
    Adv Sci (Weinh); 2021 Jul; 8(14):2100216. PubMed ID: 34306976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.