These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 24534795)

  • 1. Extraction, fractionation and functional properties of proteins from the microalgae Chlorella vulgaris.
    Ursu AV; Marcati A; Sayd T; Sante-Lhoutellier V; Djelveh G; Michaud P
    Bioresour Technol; 2014 Apr; 157():134-9. PubMed ID: 24534795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mild disintegration of the green microalgae Chlorella vulgaris using bead milling.
    Postma PR; Miron TL; Olivieri G; Barbosa MJ; Wijffels RH; Eppink MHM
    Bioresour Technol; 2015 May; 184():297-304. PubMed ID: 25280602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing methane production of Chlorella vulgaris via thermochemical pretreatments.
    Mendez L; Mahdy A; Timmers RA; Ballesteros M; González-Fernández C
    Bioresour Technol; 2013 Dec; 149():136-41. PubMed ID: 24096280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Haematococcus pluvialis soluble proteins: Extraction, characterization, concentration/fractionation and emulsifying properties.
    Ba F; Ursu AV; Laroche C; Djelveh G
    Bioresour Technol; 2016 Jan; 200():147-52. PubMed ID: 26476616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mixotrophic growth and biochemical analysis of Chlorella vulgaris cultivated with diluted monosodium glutamate wastewater.
    Ji Y; Hu W; Li X; Ma G; Song M; Pei H
    Bioresour Technol; 2014; 152():471-6. PubMed ID: 24333623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Emulsifying properties of water-soluble proteins extracted from the microalgae Chlorella sorokiniana and Phaeodactylum tricornutum.
    Ebert S; Grossmann L; Hinrichs J; Weiss J
    Food Funct; 2019 Feb; 10(2):754-764. PubMed ID: 30667441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cultivation of Chlorella vulgaris in Column Photobioreactor for Biomass Production and Lipid Accumulation.
    Wong YK; Ho KC; Tsang YF; Wang L; Yung KK
    Water Environ Res; 2016 Jan; 88(1):40-6. PubMed ID: 26803025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lipid production of Chlorella vulgaris from lipid-extracted microalgal biomass residues through two-step enzymatic hydrolysis.
    Zheng H; Gao Z; Yin F; Ji X; Huang H
    Bioresour Technol; 2012 Aug; 117():1-6. PubMed ID: 22609706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Treatment of drainage solution from hydroponic greenhouse production with microalgae.
    Hultberg M; Carlsson AS; Gustafsson S
    Bioresour Technol; 2013 May; 136():401-6. PubMed ID: 23567708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of cell rupturing by ozonation and ultrasonication for algal lipid extraction from Chlorella vulgaris.
    Huang Y; Hong A; Zhang D; Li L
    Environ Technol; 2014; 35(5-8):931-7. PubMed ID: 24645476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergistic effects of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris for enhancement of biomass and lipid yields.
    Zhang Z; Ji H; Gong G; Zhang X; Tan T
    Bioresour Technol; 2014 Jul; 164():93-9. PubMed ID: 24841576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production, Purification, and Study of the Amino Acid Composition of Microalgae Proteins.
    Andreeva A; Budenkova E; Babich O; Sukhikh S; Ulrikh E; Ivanova S; Prosekov A; Dolganyuk V
    Molecules; 2021 May; 26(9):. PubMed ID: 34066679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of biomass and lipid by the microalgae Chlorella protothecoides with heterotrophic-Cu(II) stressed (HCuS) coupling cultivation.
    Li Y; Mu J; Chen D; Han F; Xu H; Kong F; Xie F; Feng B
    Bioresour Technol; 2013 Nov; 148():283-92. PubMed ID: 24055971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling anaerobic digestion of microalgae using ADM1.
    Mairet F; Bernard O; Ras M; Lardon L; Steyer JP
    Bioresour Technol; 2011 Jul; 102(13):6823-9. PubMed ID: 21536430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioethanol production using carbohydrate-rich microalgae biomass as feedstock.
    Ho SH; Huang SW; Chen CY; Hasunuma T; Kondo A; Chang JS
    Bioresour Technol; 2013 May; 135():191-8. PubMed ID: 23116819
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodegradable branched cationic starch with high C/N ratio for Chlorella vulgaris cells concentration: Regulating microalgae flocculation performance by pH.
    Huang Y; Wei C; Liao Q; Xia A; Zhu X; Zhu X
    Bioresour Technol; 2019 Mar; 276():133-139. PubMed ID: 30623867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of CO₂ supply conditions on lipid production of Chlorella vulgaris from enzymatic hydrolysates of lipid-extracted microalgal biomass residues.
    Zheng H; Gao Z; Yin F; Ji X; Huang H
    Bioresour Technol; 2012 Dec; 126():24-30. PubMed ID: 23073086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Utilisation of Chlorella vulgaris cell biomass for the production of enzymatic protein hydrolysates.
    Morris HJ; Almarales A; Carrillo O; Bermúdez RC
    Bioresour Technol; 2008 Nov; 99(16):7723-9. PubMed ID: 18359627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental study on a coupled process of production and anaerobic digestion of Chlorella vulgaris.
    Ras M; Lardon L; Bruno S; Bernet N; Steyer JP
    Bioresour Technol; 2011 Jan; 102(1):200-6. PubMed ID: 20678925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermophilic, anaerobic co-digestion of microalgal biomass and cellulose for H2 production.
    Carver SM; Hulatt CJ; Thomas DN; Tuovinen OH
    Biodegradation; 2011 Jul; 22(4):805-14. PubMed ID: 20878208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.