These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 24534807)
1. Multipose binding in molecular docking. Atkovska K; Samsonov SA; Paszkowski-Rogacz M; Pisabarro MT Int J Mol Sci; 2014 Feb; 15(2):2622-45. PubMed ID: 24534807 [TBL] [Abstract][Full Text] [Related]
2. Characterization of small molecule binding. I. Accurate identification of strong inhibitors in virtual screening. Ding B; Wang J; Li N; Wang W J Chem Inf Model; 2013 Jan; 53(1):114-22. PubMed ID: 23259763 [TBL] [Abstract][Full Text] [Related]
3. Exploration of the structural requirements of HIV-protease inhibitors using pharmacophore, virtual screening and molecular docking approaches for lead identification. Islam MA; Pillay TS J Mol Graph Model; 2015 Mar; 56():20-30. PubMed ID: 25541527 [TBL] [Abstract][Full Text] [Related]
4. Advances in automated docking applied to human immunodeficiency virus type 1 protease. Miller MD; Sheridan RP; Kearsley SK; Underwood DJ Methods Enzymol; 1994; 241():354-70. PubMed ID: 7854188 [No Abstract] [Full Text] [Related]
5. Improved prediction of HIV-1 protease-inhibitor binding energies by molecular dynamics simulations. Jenwitheesuk E; Samudrala R BMC Struct Biol; 2003 Apr; 3():2. PubMed ID: 12675950 [TBL] [Abstract][Full Text] [Related]
6. Virtual screening for HIV protease inhibitors: a comparison of AutoDock 4 and Vina. Chang MW; Ayeni C; Breuer S; Torbett BE PLoS One; 2010 Aug; 5(8):e11955. PubMed ID: 20694138 [TBL] [Abstract][Full Text] [Related]
7. Characterizing binding of small molecules. II. Evaluating the potency of small molecules to combat resistance based on docking structures. Ding B; Li N; Wang W J Chem Inf Model; 2013 May; 53(5):1213-22. PubMed ID: 23570305 [TBL] [Abstract][Full Text] [Related]
8. A detailed comparison of current docking and scoring methods on systems of pharmaceutical relevance. Perola E; Walters WP; Charifson PS Proteins; 2004 Aug; 56(2):235-49. PubMed ID: 15211508 [TBL] [Abstract][Full Text] [Related]
9. Is It Reliable to Use Common Molecular Docking Methods for Comparing the Binding Affinities of Enantiomer Pairs for Their Protein Target? RamÃrez D; Caballero J Int J Mol Sci; 2016 Apr; 17(4):. PubMed ID: 27104528 [TBL] [Abstract][Full Text] [Related]
10. An in silico analysis of the binding modes and binding affinities of small molecule modulators of PDZ-peptide interactions. Tiwari G; Mohanty D PLoS One; 2013; 8(8):e71340. PubMed ID: 23951139 [TBL] [Abstract][Full Text] [Related]
11. Integrating Multiple Receptor Conformation Docking and Multi Dimensional QSAR for Enhancing Accuracy of Binding Affinity Prediction. Radhika V; Jaraf HA; Kanth SS; Vijjulatha M Curr Comput Aided Drug Des; 2017; 13(2):127-142. PubMed ID: 28103770 [TBL] [Abstract][Full Text] [Related]
12. A method for biomolecular structural recognition and docking allowing conformational flexibility. Sandak B; Nussinov R; Wolfson HJ J Comput Biol; 1998; 5(4):631-54. PubMed ID: 10072081 [TBL] [Abstract][Full Text] [Related]
13. Can an optimization/scoring procedure in ligand-protein docking be employed to probe drug-resistant mutations in proteins? Chen YZ; Gu XL; Cao ZW J Mol Graph Model; 2001; 19(6):560-70. PubMed ID: 11552685 [TBL] [Abstract][Full Text] [Related]
14. Improving docking results via reranking of ensembles of ligand poses in multiple X-ray protein conformations with MM-GBSA. Greenidge PA; Kramer C; Mozziconacci JC; Sherman W J Chem Inf Model; 2014 Oct; 54(10):2697-717. PubMed ID: 25266271 [TBL] [Abstract][Full Text] [Related]
15. Enhance the performance of current scoring functions with the aid of 3D protein-ligand interaction fingerprints. Liu J; Su M; Liu Z; Li J; Li Y; Wang R BMC Bioinformatics; 2017 Jul; 18(1):343. PubMed ID: 28720122 [TBL] [Abstract][Full Text] [Related]
16. Could the FDA-approved anti-HIV PR inhibitors be promising anticancer agents? An answer from enhanced docking approach and molecular dynamics analyses. Arodola OA; Soliman ME Drug Des Devel Ther; 2015; 9():6055-65. PubMed ID: 26622167 [TBL] [Abstract][Full Text] [Related]
17. Prediction of the binding energy for small molecules, peptides and proteins. Schapira M; Totrov M; Abagyan R J Mol Recognit; 1999; 12(3):177-90. PubMed ID: 10398408 [TBL] [Abstract][Full Text] [Related]
18. Applications of the NRGsuite and the Molecular Docking Software FlexAID in Computational Drug Discovery and Design. Morency LP; Gaudreault F; Najmanovich R Methods Mol Biol; 2018; 1762():367-388. PubMed ID: 29594781 [TBL] [Abstract][Full Text] [Related]
19. Inclusion of multiple fragment types in the site identification by ligand competitive saturation (SILCS) approach. Raman EP; Yu W; Lakkaraju SK; MacKerell AD J Chem Inf Model; 2013 Dec; 53(12):3384-98. PubMed ID: 24245913 [TBL] [Abstract][Full Text] [Related]
20. Optimized Virtual Screening Workflow: Towards Target-Based Polynomial Scoring Functions for HIV-1 Protease. Pintro VO; de Azevedo WF Comb Chem High Throughput Screen; 2017; 20(9):820-827. PubMed ID: 29165067 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]