These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 24534815)

  • 1. Optophononics with coupled quantum dots.
    Kerfoot ML; Govorov AO; Czarnocki C; Lu D; Gad YN; Bracker AS; Gammon D; Scheibner M
    Nat Commun; 2014; 5():3299. PubMed ID: 24534815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optically driven quantum dots as source of coherent cavity phonons: a proposal for a phonon laser scheme.
    Kabuss J; Carmele A; Brandes T; Knorr A
    Phys Rev Lett; 2012 Aug; 109(5):054301. PubMed ID: 23006175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrafast atomic-scale visualization of acoustic phonons generated by optically excited quantum dots.
    Vanacore GM; Hu J; Liang W; Bietti S; Sanguinetti S; Carbone F; Zewail AH
    Struct Dyn; 2017 Jul; 4(4):044034. PubMed ID: 28852685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relaxation dynamics of the Holstein polaron.
    Golež D; Bonča J; Vidmar L; Trugman SA
    Phys Rev Lett; 2012 Dec; 109(23):236402. PubMed ID: 23368229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Orbital and charge-resolved polaron states in CdSe dots and rods probed by scanning tunneling spectroscopy.
    Sun Z; Swart I; Delerue C; Vanmaekelbergh D; Liljeroth P
    Phys Rev Lett; 2009 May; 102(19):196401. PubMed ID: 19518979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resonant coupling of bound excitons with LO phonons in ZnO: excitonic polaron states and Fano interference.
    Xu SJ; Xiong SJ; Shi SL
    J Chem Phys; 2005 Dec; 123(22):221105. PubMed ID: 16375462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissipative time-dependent quantum transport theory.
    Zhang Y; Yam CY; Chen G
    J Chem Phys; 2013 Apr; 138(16):164121. PubMed ID: 23635125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phonon dynamics and electron-phonon coupling in pristine picene.
    Girlando A; Masino M; Bilotti I; Brillante A; Della Valle RG; Venuti E
    Phys Chem Chem Phys; 2012 Feb; 14(5):1694-9. PubMed ID: 22193510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-Mode Phononic Wire.
    Patel RN; Wang Z; Jiang W; Sarabalis CJ; Hill JT; Safavi-Naeini AH
    Phys Rev Lett; 2018 Jul; 121(4):040501. PubMed ID: 30095955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theory of quasi-elastic secondary emission from a quantum dot in the regime of vibrational resonance.
    Rukhlenko ID; Fedorov AV; Baymuratov AS; Premaratne M
    Opt Express; 2011 Aug; 19(16):15459-82. PubMed ID: 21934910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Semiclassical study of quantum coherence and isotope effects in ultrafast electron transfer reactions coupled to a proton and a phonon bath.
    Venkataraman C
    J Chem Phys; 2011 Nov; 135(20):204503. PubMed ID: 22128939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling exciton-phonon interactions in optically driven quantum dots.
    Nazir A; McCutcheon DP
    J Phys Condens Matter; 2016 Mar; 28(10):103002. PubMed ID: 26882465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-phonon processes of intraband relaxation in the terahertz regime in quantum dots.
    Wang ZW; Li SS
    J Phys Condens Matter; 2011 Jun; 23(22):225303. PubMed ID: 21593554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proposed quenching of phonon-induced processes in photoexcited quantum dots due to electron-hole asymmetries.
    Nysteen A; Kaer P; Mork J
    Phys Rev Lett; 2013 Feb; 110(8):087401. PubMed ID: 23473200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy transport and coherence properties of acoustic phonons generated by optical excitation of a quantum dot.
    Wigger D; Lüker S; Reiter DE; Axt VM; Machnikowski P; Kuhn T
    J Phys Condens Matter; 2014 Sep; 26(35):355802. PubMed ID: 25115958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of coherent phonons with defects and elementary excitations.
    Hase M; Kitajima M
    J Phys Condens Matter; 2010 Feb; 22(7):073201. PubMed ID: 21386377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coherent control of acoustic phonons by seeded Brillouin scattering in polarization-maintaining fibers.
    Feng Y; Zhang F; Zheng Y; Chen L; Shen D; Liu W; Wan W
    Opt Lett; 2019 May; 44(9):2270-2273. PubMed ID: 31042201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phonon affected transport through molecular quantum dots.
    Loos J; Koch T; Alvermann A; Bishop AR; Fehske H
    J Phys Condens Matter; 2009 Sep; 21(39):395601. PubMed ID: 21832393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coherent properties of a two-level system based on a quantum-dot photodiode.
    Zrenner A; Beham E; Stufler S; Findeis F; Bichler M; Abstreiter G
    Nature; 2002 Aug; 418(6898):612-4. PubMed ID: 12167853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissipative time-dependent quantum transport theory: Quantum interference and phonon induced decoherence dynamics.
    Zhang Y; Yam C; Chen G
    J Chem Phys; 2015 Apr; 142(16):164101. PubMed ID: 25933746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.