These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 24534944)
21. Calcium phosphate cements: study of the beta-tricalcium phosphate--dicalcium phosphate--calcite cements. Mirtchi AA; Lemaître J; Munting E Biomaterials; 1990 Mar; 11(2):83-8. PubMed ID: 2156575 [TBL] [Abstract][Full Text] [Related]
22. Electrospinning of calcium carbonate fibers and their conversion to nanocrystalline hydroxyapatite. Holopainen J; Santala E; Heikkilä M; Ritala M Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():469-76. PubMed ID: 25491852 [TBL] [Abstract][Full Text] [Related]
23. Hydrothermal synthesis of porous triphasic hydroxyapatite/(alpha and beta) tricalcium phosphate. Vani R; Girija EK; Elayaraja K; Prakash Parthiban S; Kesavamoorthy R; Narayana Kalkura S J Mater Sci Mater Med; 2009 Dec; 20 Suppl 1():S43-8. PubMed ID: 18560768 [TBL] [Abstract][Full Text] [Related]
24. Synthesis of nano-hydroxyapatite under a sonochemical/hydrothermal condition. Manafi SA; Yazdani B; Rahimiopour MR; Sadrnezhaad SK; Amin MH; Razavi M Biomed Mater; 2008 Jun; 3(2):025002. PubMed ID: 18458367 [TBL] [Abstract][Full Text] [Related]
25. Alginate-controlled formation of nanoscale calcium carbonate and hydroxyapatite mineral phase within hydrogel networks. Xie M; Olderøy MØ; Andreassen JP; Selbach SM; Strand BL; Sikorski P Acta Biomater; 2010 Sep; 6(9):3665-75. PubMed ID: 20359556 [TBL] [Abstract][Full Text] [Related]
26. Effect of hydroxyapatite particle size, morphology and crystallinity on proliferation of colon cancer HCT116 cells. Dey S; Das M; Balla VK Mater Sci Eng C Mater Biol Appl; 2014 Jun; 39():336-9. PubMed ID: 24863233 [TBL] [Abstract][Full Text] [Related]
27. The facile and low temperature synthesis of nanophase hydroxyapatite crystals using wet chemistry. Dhand V; Rhee KY; Park SJ Mater Sci Eng C Mater Biol Appl; 2014 Mar; 36():152-9. PubMed ID: 24433898 [TBL] [Abstract][Full Text] [Related]
28. Investigations on the synthesis and crystallization of hydroxyapatite at low temperature. Kalkura SN; Anee TK; Ashok M; Betzel C Biomed Mater Eng; 2004; 14(4):581-92. PubMed ID: 15472405 [TBL] [Abstract][Full Text] [Related]
29. Surfactin as a Green Agent Controlling the Growth of Porous Calcite Microstructures. Bastrzyk A; Fiedot-Toboła M; Maniak H; Polowczyk I; Płaza G Int J Mol Sci; 2020 Aug; 21(15):. PubMed ID: 32752269 [TBL] [Abstract][Full Text] [Related]
30. Facile synthesis of hydroxyapatite nanoparticles, nanowires and hollow nano-structured microspheres using similar structured hard-precursors. Lin K; Liu X; Chang J; Zhu Y Nanoscale; 2011 Aug; 3(8):3052-5. PubMed ID: 21698324 [TBL] [Abstract][Full Text] [Related]
31. A novel route for synthesis of nanocrystalline hydroxyapatite from eggshell waste. Siva Rama Krishna D; Siddharthan A; Seshadri SK; Sampath Kumar TS J Mater Sci Mater Med; 2007 Sep; 18(9):1735-43. PubMed ID: 17483877 [TBL] [Abstract][Full Text] [Related]
32. Influence of hydroxyapatite granule size, porosity, and crystallinity on tissue reaction in vivo. Part A: synthesis, characterization of the materials, and SEM analysis. Maté Sánchez de Val JE; Calvo-Guirado JL; Gómez-Moreno G; Pérez-Albacete Martínez C; Mazón P; De Aza PN Clin Oral Implants Res; 2016 Nov; 27(11):1331-1338. PubMed ID: 26666991 [TBL] [Abstract][Full Text] [Related]
33. Hydroxyapatite-armored poly(ε-caprolactone) microspheres and hydroxyapatite microcapsules fabricated via a Pickering emulsion route. Fujii S; Okada M; Nishimura T; Maeda H; Sugimoto T; Hamasaki H; Furuzono T; Nakamura Y J Colloid Interface Sci; 2012 May; 374(1):1-8. PubMed ID: 22364710 [TBL] [Abstract][Full Text] [Related]
34. Morphological and X-ray diffraction studies of crystalline hydroxyapatite-reinforced polycaprolactone. Baji A; Wong SC; Liu T; Li T; Srivatsan TS J Biomed Mater Res B Appl Biomater; 2007 May; 81(2):343-50. PubMed ID: 17022054 [TBL] [Abstract][Full Text] [Related]
35. Control over the crystal phase, shape, size and aggregation of calcium carbonate via a L-aspartic acid inducing process. Tong H; Ma W; Wang L; Wan P; Hu J; Cao L Biomaterials; 2004 Aug; 25(17):3923-9. PubMed ID: 15020169 [TBL] [Abstract][Full Text] [Related]
36. Preparation and characterization of calcium phosphate biomaterials. Calafiori AR; Di Marco G; Martino G; Marotta M J Mater Sci Mater Med; 2007 Dec; 18(12):2331-8. PubMed ID: 17569008 [TBL] [Abstract][Full Text] [Related]
37. Biomineral-Inspired Colloidal Liquid Crystals: From Assembly of Hybrids Comprising Inorganic Nanocrystals and Organic Polymer Components to Their Functionalization. Nakayama M; Kato T Acc Chem Res; 2022 Jul; 55(13):1796-1808. PubMed ID: 35699654 [TBL] [Abstract][Full Text] [Related]
38. Hydroxyapatite formation from cuttlefish bones: kinetics. Ivankovic H; Tkalcec E; Orlic S; Ferrer GG; Schauperl Z J Mater Sci Mater Med; 2010 Oct; 21(10):2711-22. PubMed ID: 20567885 [TBL] [Abstract][Full Text] [Related]
39. Alpha-tricalcium phosphate (α-TCP): solid state synthesis from different calcium precursors and the hydraulic reactivity. Cicek G; Aksoy EA; Durucan C; Hasirci N J Mater Sci Mater Med; 2011 Apr; 22(4):809-17. PubMed ID: 21445656 [TBL] [Abstract][Full Text] [Related]
40. Facile synthesis of both needle-like and spherical hydroxyapatite nanoparticles: effect of synthetic temperature and calcination on morphology, crystallite size and crystallinity. Wijesinghe WP; Mantilaka MM; Premalal EV; Herath HM; Mahalingam S; Edirisinghe M; Rajapakse RP; Rajapakse RM Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():83-90. PubMed ID: 25063096 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]