BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

587 related articles for article (PubMed ID: 2453536)

  • 1. Transplantation of fetal spinal cord tissue into the chronically injured adult rat spinal cord.
    Houlé JD; Reier PJ
    J Comp Neurol; 1988 Mar; 269(4):535-47. PubMed ID: 2453536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Axonal projections between fetal spinal cord transplants and the adult rat spinal cord: a neuroanatomical tracing study of local interactions.
    Jakeman LB; Reier PJ
    J Comp Neurol; 1991 May; 307(2):311-34. PubMed ID: 1713233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intraspinal transplantation of embryonic spinal cord tissue in neonatal and adult rats.
    Reier PJ; Bregman BS; Wujek JR
    J Comp Neurol; 1986 May; 247(3):275-96. PubMed ID: 3522658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The structural integrity of glial scar tissue associated with a chronic spinal cord lesion can be altered by transplanted fetal spinal cord tissue.
    Houle J
    J Neurosci Res; 1992 Jan; 31(1):120-30. PubMed ID: 1613818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Implantation of cultured sensory neurons and Schwann cells into lesioned neonatal rat spinal cord. II. Implant characteristics and examination of corticospinal tract growth.
    Kuhlengel KR; Bunge MB; Bunge RP; Burton H
    J Comp Neurol; 1990 Mar; 293(1):74-91. PubMed ID: 1690226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regeneration of adult dorsal root axons into transplants of embryonic spinal cord.
    Tessler A; Himes BT; Houle J; Reier PJ
    J Comp Neurol; 1988 Apr; 270(4):537-48. PubMed ID: 3259590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solid human embryonic spinal cord xenografts in acute and chronic spinal cord cavities: a morphological and functional study.
    Akesson E; Holmberg L; Jönhagen ME; Kjaeldgaard A; Falci S; Sundström E; Seiger A
    Exp Neurol; 2001 Aug; 170(2):305-16. PubMed ID: 11476597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reinnervation of the biceps brachii muscle following cotransplantation of fetal spinal cord and autologous peripheral nerve into the injured cervical spinal cord of the adult rat.
    Duchossoy Y; Kassar-Duchossoy L; Orsal D; Stettler O; Horvat JC
    Exp Neurol; 2001 Feb; 167(2):329-40. PubMed ID: 11161621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrastructural organization of regenerated adult dorsal root axons within transplants of fetal spinal cord.
    Itoh Y; Tessler A
    J Comp Neurol; 1990 Feb; 292(3):396-411. PubMed ID: 1692851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fetal spinal cord tissue in mini-guidance channels promotes longitudinal axonal growth after grafting into hemisected adult rat spinal cords.
    Bamber NI; Li H; Aebischer P; Xu XM
    Neural Plast; 1999; 6(4):103-21. PubMed ID: 10714264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characteristics of human fetal spinal cord grafts in the adult rat spinal cord: influences of lesion and grafting conditions.
    Giovanini MA; Reier PJ; Eskin TA; Wirth E; Anderson DK
    Exp Neurol; 1997 Dec; 148(2):523-43. PubMed ID: 9417830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Axonal and nonneuronal cell responses to spinal cord injury in mice lacking glial fibrillary acidic protein.
    Wang X; Messing A; David S
    Exp Neurol; 1997 Dec; 148(2):568-76. PubMed ID: 9417833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transplantation of embryonic spinal cord-derived neurospheres support growth of supraspinal projections and functional recovery after spinal cord injury in the neonatal rat.
    Nakamura M; Okano H; Toyama Y; Dai HN; Finn TP; Bregman BS
    J Neurosci Res; 2005 Aug; 81(4):457-68. PubMed ID: 15968644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust growth of chronically injured spinal cord axons induced by grafts of genetically modified NGF-secreting cells.
    Grill RJ; Blesch A; Tuszynski MH
    Exp Neurol; 1997 Dec; 148(2):444-52. PubMed ID: 9417824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lineage-restricted neural precursors survive, migrate, and differentiate following transplantation into the injured adult spinal cord.
    Lepore AC; Fischer I
    Exp Neurol; 2005 Jul; 194(1):230-42. PubMed ID: 15899260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Corticospinal tract plasticity and astroglial reactivity after cervical spinal injury in the postnatal rat.
    Firkins SS; Bates CA; Stelzner DJ
    Exp Neurol; 1993 Mar; 120(1):1-15. PubMed ID: 7682966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The ability of human Schwann cell grafts to promote regeneration in the transected nude rat spinal cord.
    Guest JD; Rao A; Olson L; Bunge MB; Bunge RP
    Exp Neurol; 1997 Dec; 148(2):502-22. PubMed ID: 9417829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Homotypic fetal transplants into an experimental model of spinal cord neurodegeneration.
    Nothias F; Peschanski M
    J Comp Neurol; 1990 Nov; 301(4):520-34. PubMed ID: 2273098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the growth and fate of fetal spinal iso- and allografts in the adult rat injured spinal cord.
    Theele DP; Schrimsher GW; Reier PJ
    Exp Neurol; 1996 Nov; 142(1):128-43. PubMed ID: 8912904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transplants of immature astrocytes promote axonal regeneration in the adult rat brain.
    Wunderlich G; Stichel CC; Schroeder WO; Müller HW
    Glia; 1994 Jan; 10(1):49-58. PubMed ID: 7507887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.