These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 24535456)

  • 1. Stress and corticosterone increase the readily releasable pool of glutamate vesicles in synaptic terminals of prefrontal and frontal cortex.
    Treccani G; Musazzi L; Perego C; Milanese M; Nava N; Bonifacino T; Lamanna J; Malgaroli A; Drago F; Racagni G; Nyengaard JR; Wegener G; Bonanno G; Popoli M
    Mol Psychiatry; 2014 Apr; 19(4):433-43. PubMed ID: 24535456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acute stress rapidly increases the readily releasable pool of glutamate vesicles in prefrontal and frontal cortex through non-genomic action of corticosterone.
    Treccani G; Musazzi L; Perego C; Milanese M; Nava N; Bonifacino T; Lamanna J; Malgaroli A; Drago F; Racagni G; Nyengaard JR; Wegener G; Bonanno G; Popoli M
    Mol Psychiatry; 2014 Apr; 19(4):401. PubMed ID: 24658610
    [No Abstract]   [Full Text] [Related]  

  • 3. Acute stress is not acute: sustained enhancement of glutamate release after acute stress involves readily releasable pool size and synapsin I activation.
    Musazzi L; Tornese P; Sala N; Popoli M
    Mol Psychiatry; 2017 Sep; 22(9):1226-1227. PubMed ID: 27698433
    [No Abstract]   [Full Text] [Related]  

  • 4. Acute stress increases depolarization-evoked glutamate release in the rat prefrontal/frontal cortex: the dampening action of antidepressants.
    Musazzi L; Milanese M; Farisello P; Zappettini S; Tardito D; Barbiero VS; Bonifacino T; Mallei A; Baldelli P; Racagni G; Raiteri M; Benfenati F; Bonanno G; Popoli M
    PLoS One; 2010 Jan; 5(1):e8566. PubMed ID: 20052403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chronic desipramine prevents acute stress-induced reorganization of medial prefrontal cortex architecture by blocking glutamate vesicle accumulation and excitatory synapse increase.
    Nava N; Treccani G; Liebenberg N; Chen F; Popoli M; Wegener G; Nyengaard JR
    Int J Neuropsychopharmacol; 2014 Dec; 18(3):. PubMed ID: 25522419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hippocampal Fast Glutamatergic Transmission Is Transiently Regulated by Corticosterone Pulsatility.
    Sarabdjitsingh RA; Pasricha N; Smeets JA; Kerkhofs A; Mikasova L; Karst H; Groc L; Joëls M
    PLoS One; 2016; 11(1):e0145858. PubMed ID: 26741493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Presynaptic regulation of quantal size: K+/H+ exchange stimulates vesicular glutamate transport.
    Goh GY; Huang H; Ullman J; Borre L; Hnasko TS; Trussell LO; Edwards RH
    Nat Neurosci; 2011 Aug; 14(10):1285-92. PubMed ID: 21874016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of synaptic vesicles pools within motor nerve terminals during short-term facilitation and neuromodulation.
    Logsdon S; Johnstone AF; Viele K; Cooper RL
    J Appl Physiol (1985); 2006 Feb; 100(2):662-71. PubMed ID: 16210437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synapsin Isoforms Regulating GABA Release from Hippocampal Interneurons.
    Song SH; Augustine GJ
    J Neurosci; 2016 Jun; 36(25):6742-57. PubMed ID: 27335405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prolonged depolarization of rat cerebral synaptosomes leads to an increase in vesicular glutamate content.
    Bole DG; Hirata K; Ueda T
    Neurosci Lett; 2002 Mar; 322(1):17-20. PubMed ID: 11958833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Post-tetanic increase in the fast-releasing synaptic vesicle pool at the expense of the slowly releasing pool.
    Lee JS; Ho WK; Lee SH
    J Gen Physiol; 2010 Sep; 136(3):259-72. PubMed ID: 20805573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Caffeine facilitation of glutamate release from rat cerebral cortex nerve terminals (synaptosomes) through activation protein kinase C pathway: an interaction with presynaptic adenosine A1 receptors.
    Wang SJ
    Synapse; 2007 Jun; 61(6):401-11. PubMed ID: 17372967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms for acute stress-induced enhancement of glutamatergic transmission and working memory.
    Yuen EY; Liu W; Karatsoreos IN; Ren Y; Feng J; McEwen BS; Yan Z
    Mol Psychiatry; 2011 Feb; 16(2):156-70. PubMed ID: 20458323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nicotine enhancement of dopamine release by a calcium-dependent increase in the size of the readily releasable pool of synaptic vesicles.
    Turner TJ
    J Neurosci; 2004 Dec; 24(50):11328-36. PubMed ID: 15601939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Upregulation of presynaptic proteins and protein kinases associated with enhanced glutamate release from axonal terminals (synaptosomes) of the medial prefrontal cortex in rats with neuropathic pain.
    Hung KL; Wang SJ; Wang YC; Chiang TR; Wang CC
    Pain; 2014 Feb; 155(2):377-387. PubMed ID: 24211726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decreased neuronal synaptosome associated protein 29 contributes to poststroke cognitive impairment by disrupting presynaptic maintenance.
    Yan W; Fan J; Zhang X; Song H; Wan R; Wang W; Yin Y
    Theranostics; 2021; 11(10):4616-4636. PubMed ID: 33754017
    [No Abstract]   [Full Text] [Related]  

  • 17. Modulation of presynaptic glucocorticoid receptors on glutamate release from rat hippocampal nerve terminals.
    Wang CC; Wang SJ
    Synapse; 2009 Sep; 63(9):745-51. PubMed ID: 19484722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osthole and imperatorin, the active constituents of Cnidium monnieri (L.) Cusson, facilitate glutamate release from rat hippocampal nerve terminals.
    Wang SJ; Lin TY; Lu CW; Huang WJ
    Neurochem Int; 2008 Dec; 53(6-8):416-23. PubMed ID: 18951936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional and structural remodeling of glutamate synapses in prefrontal and frontal cortex induced by behavioral stress.
    Musazzi L; Treccani G; Popoli M
    Front Psychiatry; 2015; 6():60. PubMed ID: 25964763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lack of presynaptic interaction between glucocorticoid and CB1 cannabinoid receptors in GABA- and glutamatergic terminals in the frontal cortex of laboratory rodents.
    Bitencourt RM; Alpár A; Cinquina V; Ferreira SG; Pinheiro BS; Lemos C; Ledent C; Takahashi RN; Sialana FJ; Lubec G; Cunha RA; Harkany T; Köfalvi A
    Neurochem Int; 2015 Nov; 90():72-84. PubMed ID: 26196379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.