These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
624 related articles for article (PubMed ID: 24536032)
1. Recent developments in microfluidics for cell studies. Xiong B; Ren K; Shu Y; Chen Y; Shen B; Wu H Adv Mater; 2014 Aug; 26(31):5525-32. PubMed ID: 24536032 [TBL] [Abstract][Full Text] [Related]
2. Development of Droplet Microfluidics Enabling High-Throughput Single-Cell Analysis. Wen N; Zhao Z; Fan B; Chen D; Men D; Wang J; Chen J Molecules; 2016 Jul; 21(7):. PubMed ID: 27399651 [TBL] [Abstract][Full Text] [Related]
3. A design and optimization of a high throughput valve based microfluidic device for single cell compartmentalization and analysis. Briones J; Espulgar W; Koyama S; Takamatsu H; Tamiya E; Saito M Sci Rep; 2021 Jun; 11(1):12995. PubMed ID: 34155296 [TBL] [Abstract][Full Text] [Related]
4. Microfluidic Platform for Parallel Single Cell Analysis for Diagnostic Applications. Le Gac S Methods Mol Biol; 2017; 1547():187-209. PubMed ID: 28044297 [TBL] [Abstract][Full Text] [Related]
5. Numerical Analysis of Hydrodynamic Flow in Microfluidic Biochip for Single-Cell Trapping Application. Khalili AA; Ahmad MR Int J Mol Sci; 2015 Nov; 16(11):26770-85. PubMed ID: 26569218 [TBL] [Abstract][Full Text] [Related]
6. Microfluidic-integrated biosensors: prospects for point-of-care diagnostics. Kumar S; Kumar S; Ali MA; Anand P; Agrawal VV; John R; Maji S; Malhotra BD Biotechnol J; 2013 Nov; 8(11):1267-79. PubMed ID: 24019250 [TBL] [Abstract][Full Text] [Related]
7. A review of digital microfluidics as portable platforms for lab-on a-chip applications. Samiei E; Tabrizian M; Hoorfar M Lab Chip; 2016 Jul; 16(13):2376-96. PubMed ID: 27272540 [TBL] [Abstract][Full Text] [Related]
11. Microfluidic platforms for single-cell protein analysis. Liu Y; Singh AK J Lab Autom; 2013 Dec; 18(6):446-54. PubMed ID: 23821679 [TBL] [Abstract][Full Text] [Related]
12. Capillary-assisted microfluidic biosensing platform captures single cell secretion dynamics in nanoliter compartments. Hassanzadeh-Barforoushi A; Warkiani ME; Gallego-Ortega D; Liu G; Barber T Biosens Bioelectron; 2020 May; 155():112113. PubMed ID: 32217335 [TBL] [Abstract][Full Text] [Related]
13. Immunoassays in microfluidic systems. Ng AH; Uddayasankar U; Wheeler AR Anal Bioanal Chem; 2010 Jun; 397(3):991-1007. PubMed ID: 20422163 [TBL] [Abstract][Full Text] [Related]
14. Analyzing Microbial Population Heterogeneity-Expanding the Toolbox of Microfluidic Single-Cell Cultivations. Leygeber M; Lindemann D; Sachs CC; Kaganovitch E; Wiechert W; Nöh K; Kohlheyer D J Mol Biol; 2019 Nov; 431(23):4569-4588. PubMed ID: 31034885 [TBL] [Abstract][Full Text] [Related]
15. Microfluidics in structured multimaterial fibers. Yuan R; Lee J; Su HW; Levy E; Khudiyev T; Voldman J; Fink Y Proc Natl Acad Sci U S A; 2018 Nov; 115(46):E10830-E10838. PubMed ID: 30373819 [TBL] [Abstract][Full Text] [Related]
16. Droplet based microfluidics. Seemann R; Brinkmann M; Pfohl T; Herminghaus S Rep Prog Phys; 2012 Jan; 75(1):016601. PubMed ID: 22790308 [TBL] [Abstract][Full Text] [Related]
17. Ultrasonic manipulation of single cells. Wiklund M; Onfelt B Methods Mol Biol; 2012; 853():177-96. PubMed ID: 22323148 [TBL] [Abstract][Full Text] [Related]
18. Microfluidic strategies for design and assembly of microfibers and nanofibers with tissue engineering and regenerative medicine applications. Daniele MA; Boyd DA; Adams AA; Ligler FS Adv Healthc Mater; 2015 Jan; 4(1):11-28. PubMed ID: 24853649 [TBL] [Abstract][Full Text] [Related]
19. Recent developments in microfluidic large scale integration. Araci IE; Brisk P Curr Opin Biotechnol; 2014 Feb; 25():60-8. PubMed ID: 24484882 [TBL] [Abstract][Full Text] [Related]