These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 2454101)

  • 1. Incorporation of partially purified cation channels from cardiac sarcolemmal membrane into planar lipid bilayers.
    Nakao S; Hamamoto T; Kagawa Y; Shimizu R; Mori K; Hirata H
    Biochem Biophys Res Commun; 1988 May; 152(3):1255-62. PubMed ID: 2454101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incorporation of calcium channels from cardiac sarcolemmal membrane vesicles into planar lipid bilayers.
    Ehrlich BE; Schen CR; Garcia ML; Kaczorowski GJ
    Proc Natl Acad Sci U S A; 1986 Jan; 83(1):193-7. PubMed ID: 2417238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of K+ and Cl-channels from calf cardiac sarcolemma in planar lipid bilayer membranes.
    Coronado R; Latorre R
    Nature; 1982 Aug; 298(5877):849-52. PubMed ID: 6287275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconstitution of vacuolar ion channels into planar lipid bilayers.
    Klughammer B; Benz R; Betz M; Thume M; Dietz KJ
    Biochim Biophys Acta; 1992 Mar; 1104(2):308-16. PubMed ID: 1372179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cardiac calcium channels in planar lipid bilayers. L-type channels and calcium-permeable channels open at negative membrane potentials.
    Rosenberg RL; Hess P; Tsien RW
    J Gen Physiol; 1988 Jul; 92(1):27-54. PubMed ID: 2844956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insulation of the conduction pathway of muscle transverse tubule calcium channels from the surface charge of bilayer phospholipid.
    Coronado R; Affolter H
    J Gen Physiol; 1986 Jun; 87(6):933-53. PubMed ID: 2425043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Isolation from the myocardial sarcolemma of a protein inducing the Ca2+-channel conductivity of bilayer lipid membranes].
    Kostiuk PG; Kurskiĭ MD; Vorobets ZD; Sokolov IuV
    Dokl Akad Nauk SSSR; 1984; 274(3):764-8. PubMed ID: 6323121
    [No Abstract]   [Full Text] [Related]  

  • 8. Calcium and barium permeable channels from Aplysia nervous system reconstituted in lipid bilayers.
    Coyne MD; Dagan D; Levitan IB
    J Membr Biol; 1987; 97(3):205-13. PubMed ID: 2442394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium channels in planar lipid bilayers: insights into mechanisms of ion permeation and gating.
    Rosenberg RL; Hess P; Reeves JP; Smilowitz H; Tsien RW
    Science; 1986 Mar; 231(4745):1564-6. PubMed ID: 2420007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium channel activity in a purified dihydropyridine-receptor preparation of skeletal muscle.
    Smith JS; McKenna EJ; Ma JJ; Vilven J; Vaghy PL; Schwartz A; Coronado R
    Biochemistry; 1987 Nov; 26(22):7182-8. PubMed ID: 2447943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ca2+-activated synexin forms highly selective, voltage-gated Ca2+ channels in phosphatidylserine bilayer membranes.
    Pollard HB; Rojas E
    Proc Natl Acad Sci U S A; 1988 May; 85(9):2974-8. PubMed ID: 2452441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Voltage-dependent calcium channels from Paramecium cilia incorporated into planar lipid bilayers.
    Ehrlich BE; Finkelstein A; Forte M; Kung C
    Science; 1984 Jul; 225(4660):427-8. PubMed ID: 6330895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Echinococcus granulosus: partial characterization of the conductive properties of two cation channels from protoscoleces of the ovine strain, reconstituted on planar lipid bilayers.
    Grosman C; Reisin IL
    Exp Parasitol; 1995 Dec; 81(4):546-55. PubMed ID: 8542996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Divalent cation conduction in the ryanodine receptor channel of sheep cardiac muscle sarcoplasmic reticulum.
    Tinker A; Williams AJ
    J Gen Physiol; 1992 Sep; 100(3):479-93. PubMed ID: 1279095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adrenocorticotropin activates barium-conducting channels from bovine adrenocortical zona fasciculata cells in lipid bilayers.
    Coyne MD; Pinkney L
    Endocrinology; 1991 Jul; 129(1):263-9. PubMed ID: 1711462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization and localization of two ion-binding sites within the pore of cardiac L-type calcium channels.
    Rosenberg RL; Chen XH
    J Gen Physiol; 1991 Jun; 97(6):1207-25. PubMed ID: 1651978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstitution of ionic channels from inner and outer membranes of mammalian cardiac nuclei.
    Rousseau E; Michaud C; Lefebvre D; Proteau S; Decrouy A
    Biophys J; 1996 Feb; 70(2):703-14. PubMed ID: 8789087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of 1,4 dihydropyridine calcium channel antagonists with biological membranes: lipid bilayer partitioning could occur before drug binding to receptors.
    Herbette LG; Vant Erve YM; Rhodes DG
    J Mol Cell Cardiol; 1989 Feb; 21(2):187-201. PubMed ID: 2545886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium-dependent inactivation of L-type calcium channels in planar lipid bilayers.
    Haack JA; Rosenberg RL
    Biophys J; 1994 Apr; 66(4):1051-60. PubMed ID: 8038377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies on human porin XIX: zinc ions reduce the voltage-dependence of human type-1 porin integrated in artificial planar lipid bilayers; barium ions do not.
    Hellmann KP; Siadat S; Reymann S; Thinnes FP
    Mol Genet Metab; 1999 Jun; 67(2):176-80. PubMed ID: 10356318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.