These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 2454414)

  • 1. The role of the capillary wall in restricting diffusion of macromolecules. A study of peritoneal clearance of dextrans.
    Hirszel P; Shea-Donohue T; Chakrabarti E; Montcalm E; Maher JF
    Nephron; 1988; 49(1):58-61. PubMed ID: 2454414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exchange of macromolecules between peritoneal cavity and plasma.
    Flessner MF; Dedrick RL; Schultz JS
    Am J Physiol; 1985 Jan; 248(1 Pt 2):H15-25. PubMed ID: 2578740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dialysate to blood transport of macromolecules during peritoneal dialysis.
    Leypoldt JK; Chiu AS; Frigon RP; Henderson LW
    Am J Physiol; 1989 Dec; 257(6 Pt 2):H1851-9. PubMed ID: 2481403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of lymphatic absorption to loss of ultrafiltration and solute clearances in continuous ambulatory peritoneal dialysis.
    Mactier RA; Khanna R; Twardowski Z; Moore H; Nolph KD
    J Clin Invest; 1987 Nov; 80(5):1311-6. PubMed ID: 3680499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The disappearance of macromolecules from the peritoneal cavity during continuous ambulatory peritoneal dialysis (CAPD) is not dependent on molecular size.
    Krediet RT; Struijk DG; Koomen GC; Hoek FJ; Arisz L
    Perit Dial Int; 1990; 10(2):147-52. PubMed ID: 1707684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Permselectivity of the glomerular capillary wall to macromolecules. II. Experimental studies in rats using neutral dextran.
    Chang RL; Ueki IF; Troy JL; Deen WM; Robertson CR; Brenner BM
    Biophys J; 1975 Sep; 15(9):887-906. PubMed ID: 1182263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exchange of macromolecules between plasma and peritoneal cavity in ascites tumor-bearing, normal, and serotonin-injected mice.
    Nagy JA; Herzberg KT; Masse EM; Zientara GP; Dvorak HF
    Cancer Res; 1989 Oct; 49(19):5448-58. PubMed ID: 2475250
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular charge influences transperitoneal macromolecule transport.
    Leypoldt JK; Henderson LW
    Kidney Int; 1993 Apr; 43(4):837-44. PubMed ID: 7683067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular size dependence of peritoneal transport.
    Leypoldt JK; Parker HR; Frigon RP; Henderson LW
    J Lab Clin Med; 1987 Aug; 110(2):207-16. PubMed ID: 2439624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of the disappearance rate for the estimation of lymphatic absorption during CAPD.
    Struijk DG; Imholz AL; Krediet RT; Koomen GC; Arisz L
    Blood Purif; 1992; 10(3-4):182-8. PubMed ID: 1284998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disproportionally low clearance of macromolecules from the plasma to the peritoneal cavity in a mouse model of peritoneal dialysis.
    Rippe A; Rippe C; Swärd K; Rippe B
    Nephrol Dial Transplant; 2007 Jan; 22(1):88-95. PubMed ID: 17050632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isoproterenol enhancement of peritoneal permeability.
    Maher JF; Shea C; Cassetta M; Hohnadel DC
    J Dial; 1977; 1(4):319-31. PubMed ID: 608855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peritoneal dialysis in rabbits. A study of transperitoneal theophylline flux and peritoneal permeability.
    Maher JF; Cassetta M; Shea C; Hohnadel DC
    Nephron; 1978; 20(1):18-23. PubMed ID: 619296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amphotericin B, mercury chloride and peritoneal transport in rabbits.
    Zweers MM; Douma CE; de Waart DR; Korevaar JC; Krediet RT; Struijk DG
    Clin Nephrol; 2001 Jul; 56(1):60-8. PubMed ID: 11499660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hyaluronan prevents the decreased net ultrafiltration caused by increased peritoneal dialysate fill volume.
    Wang T; Cheng HH; Heimbürger O; Waniewski J; Bergström J; Lindholm B
    Kidney Int; 1998 Feb; 53(2):496-502. PubMed ID: 9461112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transvascular passage of macromolecules into the peritoneal cavity of normo- and hypothermic rats in vivo: active or passive transport?
    Rosengren BI; Carlsson O; Venturoli D; al Rayyes O; Rippe B
    J Vasc Res; 2004; 41(2):123-30. PubMed ID: 15010575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of lymphatics in peritoneal dialysis.
    Khanna R; Mactier R
    Blood Purif; 1992; 10(3-4):163-72. PubMed ID: 1308682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lymphatic versus nonlymphatic fluid absorption from the peritoneal cavity as related to the peritoneal ultrafiltration capacity and sieving properties.
    Rippe B; Zakaria ER
    Blood Purif; 1992; 10(3-4):189-202. PubMed ID: 1308683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of histamine and its receptor antagonists on peritoneal permeability.
    Shostak A; Chakrabarti E; Hirszel P; Maher JF
    Kidney Int; 1988 Dec; 34(6):786-90. PubMed ID: 3210539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of amino acid based dialysate on peritoneal blood flow and permeability in stable CAPD patients: a potential role for nitric oxide?
    Douma CE; de Waart DR; Struijk DG; Krediet RT
    Clin Nephrol; 1996 May; 45(5):295-302. PubMed ID: 8738660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.