These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 2454699)

  • 1. Evidence for the presence of two types of potassium channels in the rat optic nerve.
    Gordon TR; Kocsis JD; Waxman SG
    Brain Res; 1988 Apr; 447(1):1-9. PubMed ID: 2454699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of 4-AP and TEA sensitivities in mammalian myelinated nerve fibers.
    Eng DL; Gordon TR; Kocsis JD; Waxman SG
    J Neurophysiol; 1988 Dec; 60(6):2168-79. PubMed ID: 2853208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional differences between 4-aminopyridine and tetraethylammonium-sensitive potassium channels in myelinated axons.
    Kocsis JD; Eng DL; Gordon TR; Waxman SG
    Neurosci Lett; 1987 Mar; 75(2):193-8. PubMed ID: 2437499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mammalian optic nerve fibers display two pharmacologically distinct potassium channels.
    Kocsis JD; Gordon TR; Waxman SG
    Brain Res; 1986 Sep; 383(1-2):357-61. PubMed ID: 2429732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TEA-sensitive potassium channels and inward rectification in regenerated rat sciatic nerve.
    Gordon TR; Kocsis JD; Waxman SG
    Muscle Nerve; 1991 Jul; 14(7):640-6. PubMed ID: 1922170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential sensitivity of amphibian nodal and paranodal K+ channels to 4-aminopyridine and TEA.
    Schauf CL
    Experientia; 1987 Apr; 43(4):405-8. PubMed ID: 2436941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pharmacological sensitivities of two afterhyperpolarizations in rat optic nerve.
    Gordon TR; Kocsis JD; Waxman SG
    Brain Res; 1989 Nov; 502(2):252-7. PubMed ID: 2555026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Action potential repolarization and a fast after-hyperpolarization in rat hippocampal pyramidal cells.
    Storm JF
    J Physiol; 1987 Apr; 385():733-59. PubMed ID: 2443676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of tetraethylammonium and 4-aminopyridine on the plateau potential of circular myometrium from the pregnant rat.
    Wilde DW; Marshall JM
    Biol Reprod; 1988 May; 38(4):836-45. PubMed ID: 2456792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrogenic pump (Na+/K(+)-ATPase) activity in rat optic nerve.
    Gordon TR; Kocsis JD; Waxman SG
    Neuroscience; 1990; 37(3):829-37. PubMed ID: 2174135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Function and distribution of three types of rectifying channel in rat spinal root myelinated axons.
    Baker M; Bostock H; Grafe P; Martius P
    J Physiol; 1987 Feb; 383():45-67. PubMed ID: 2443652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time- and frequency-dependent effects of potassium channel blockers on large and medium diameter optic tract axons.
    Fox DA; Ruan DY
    Brain Res; 1989 Oct; 498(2):229-42. PubMed ID: 2551460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-synaptic modulation of repetitive firing by adenosine is antagonized by 4-aminopyridine in a rat hippocampal slice.
    Schubert P; Lee KS
    Neurosci Lett; 1986 Jun; 67(3):334-8. PubMed ID: 2426636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple potassium conductances and their role in action potential repolarization and repetitive firing behavior of neonatal rat hypoglossal motoneurons.
    Viana F; Bayliss DA; Berger AJ
    J Neurophysiol; 1993 Jun; 69(6):2150-63. PubMed ID: 8350136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Current-clamp analysis of a time-dependent rectification in rat optic nerve.
    Eng DL; Gordon TR; Kocsis JD; Waxman SG
    J Physiol; 1990 Feb; 421():185-202. PubMed ID: 2348391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ionic conductances contributing to spike repolarization and after-potentials in rat medial vestibular nucleus neurones.
    Johnston AR; MacLeod NK; Dutia MB
    J Physiol; 1994 Nov; 481 ( Pt 1)(Pt 1):61-77. PubMed ID: 7531769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased spike-frequency adaptation and tea sensitivity in dorsal root fibers after sciatic nerve injury.
    Utzschneider DA; Bhisitkhul RB; Kocsis JD
    Muscle Nerve; 1993 Sep; 16(9):958-63. PubMed ID: 8355727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Action potential electrogenesis in mammalian central axons.
    Kocsis JD; Waxman SG
    Adv Neurol; 1981; 31():299-312. PubMed ID: 6275668
    [No Abstract]   [Full Text] [Related]  

  • 19. Effects of stimulus frequency and potassium channel blockade on the secretion of vasopressin and oxytocin from the neurohypophysis.
    Bondy CA; Gainer H; Russell JT
    Neuroendocrinology; 1987 Sep; 46(3):258-67. PubMed ID: 2443864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of tetraethylammonium on the depolarizing after-potential and passive properties of lizard myelinated axons.
    Barrett EF; Morita K; Scappaticci KA
    J Physiol; 1988 Aug; 402():65-78. PubMed ID: 2853225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.