These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
278 related articles for article (PubMed ID: 24547885)
1. Correlation of mRNA and protein abundance in the developing maize leaf. Ponnala L; Wang Y; Sun Q; van Wijk KJ Plant J; 2014 May; 78(3):424-40. PubMed ID: 24547885 [TBL] [Abstract][Full Text] [Related]
2. Dynamics of Chloroplast Translation during Chloroplast Differentiation in Maize. Chotewutmontri P; Barkan A PLoS Genet; 2016 Jul; 12(7):e1006106. PubMed ID: 27414025 [TBL] [Abstract][Full Text] [Related]
3. Maize floral regulator protein INDETERMINATE1 is localized to developing leaves and is not altered by light or the sink/source transition. Wong AY; Colasanti J J Exp Bot; 2007; 58(3):403-14. PubMed ID: 17307745 [TBL] [Abstract][Full Text] [Related]
4. The ZmCLA4 gene in the qLA4-1 QTL controls leaf angle in maize (Zea mays L.). Zhang J; Ku LX; Han ZP; Guo SL; Liu HJ; Zhang ZZ; Cao LR; Cui XJ; Chen YH J Exp Bot; 2014 Sep; 65(17):5063-76. PubMed ID: 24987012 [TBL] [Abstract][Full Text] [Related]
5. Systems analysis of a maize leaf developmental gradient redefines the current C4 model and provides candidates for regulation. Pick TR; Bräutigam A; Schlüter U; Denton AK; Colmsee C; Scholz U; Fahnenstich H; Pieruschka R; Rascher U; Sonnewald U; Weber AP Plant Cell; 2011 Dec; 23(12):4208-20. PubMed ID: 22186372 [TBL] [Abstract][Full Text] [Related]
6. Transcript and metabolite signature of maize source leaves suggests a link between transitory starch to sucrose balance and the autonomous floral transition. Coneva V; Guevara D; Rothstein SJ; Colasanti J J Exp Bot; 2012 Sep; 63(14):5079-92. PubMed ID: 22791826 [TBL] [Abstract][Full Text] [Related]
7. Genome-wide transcript analysis of early maize leaf development reveals gene cohorts associated with the differentiation of C4 Kranz anatomy. Wang P; Kelly S; Fouracre JP; Langdale JA Plant J; 2013 Aug; 75(4):656-70. PubMed ID: 23647263 [TBL] [Abstract][Full Text] [Related]
8. The Interplay between Carbon Availability and Growth in Different Zones of the Growing Maize Leaf. Czedik-Eysenberg A; Arrivault S; Lohse MA; Feil R; Krohn N; Encke B; Nunes-Nesi A; Fernie AR; Lunn JE; Sulpice R; Stitt M Plant Physiol; 2016 Oct; 172(2):943-967. PubMed ID: 27582314 [TBL] [Abstract][Full Text] [Related]
9. Developmental dynamics of Kranz cell transcriptional specificity in maize leaf reveals early onset of C4-related processes. Tausta SL; Li P; Si Y; Gandotra N; Liu P; Sun Q; Brutnell TP; Nelson T J Exp Bot; 2014 Jul; 65(13):3543-55. PubMed ID: 24790109 [TBL] [Abstract][Full Text] [Related]
10. Transcriptomic Analysis of Leaf Sheath Maturation in Maize. Dong L; Qin L; Dai X; Ding Z; Bi R; Liu P; Chen Y; Brutnell TP; Wang X; Li P Int J Mol Sci; 2019 May; 20(10):. PubMed ID: 31109136 [TBL] [Abstract][Full Text] [Related]
11. The developmental dynamics of the maize leaf transcriptome. Li P; Ponnala L; Gandotra N; Wang L; Si Y; Tausta SL; Kebrom TH; Provart N; Patel R; Myers CR; Reidel EJ; Turgeon R; Liu P; Sun Q; Nelson T; Brutnell TP Nat Genet; 2010 Dec; 42(12):1060-7. PubMed ID: 21037569 [TBL] [Abstract][Full Text] [Related]
12. Integrated Analysis of Protein Abundance, Transcript Level, and Tissue Diversity To Reveal Developmental Regulation of Maize. Jia H; Sun W; Li M; Zhang Z J Proteome Res; 2018 Feb; 17(2):822-833. PubMed ID: 29250956 [TBL] [Abstract][Full Text] [Related]
13. Structural and metabolic transitions of C4 leaf development and differentiation defined by microscopy and quantitative proteomics in maize. Majeran W; Friso G; Ponnala L; Connolly B; Huang M; Reidel E; Zhang C; Asakura Y; Bhuiyan NH; Sun Q; Turgeon R; van Wijk KJ Plant Cell; 2010 Nov; 22(11):3509-42. PubMed ID: 21081695 [TBL] [Abstract][Full Text] [Related]
14. Large-scale mRNA expression profiling in the common ice plant, Mesembryanthemum crystallinum, performing C3 photosynthesis and Crassulacean acid metabolism (CAM). Cushman JC; Tillett RL; Wood JA; Branco JM; Schlauch KA J Exp Bot; 2008; 59(7):1875-94. PubMed ID: 18319238 [TBL] [Abstract][Full Text] [Related]
15. Starch biosynthesis contributes to the maintenance of photosynthesis and leaf growth under drought stress in maize. AbdElgawad H; Avramova V; Baggerman G; Van Raemdonck G; Valkenborg D; Van Ostade X; Guisez Y; Prinsen E; Asard H; Van den Ende W; Beemster GTS Plant Cell Environ; 2020 Sep; 43(9):2254-2271. PubMed ID: 32488892 [TBL] [Abstract][Full Text] [Related]
16. Physiological and proteome studies of maize (Zea mays L.) in response to leaf removal under high plant density. Wei S; Wang X; Jiang D; Dong S BMC Plant Biol; 2018 Dec; 18(1):378. PubMed ID: 30594144 [TBL] [Abstract][Full Text] [Related]
17. Effects of elevated CO2 on growth, carbon assimilation, photosynthate accumulation and related enzymes in rice leaves during sink-source transition. Li JY; Liu XH; Cai QS; Gu H; Zhang SS; Wu YY; Wang CJ J Integr Plant Biol; 2008 Jun; 50(6):723-32. PubMed ID: 18713413 [TBL] [Abstract][Full Text] [Related]
18. Starch Content in Leaf Sheath Controlled by CO2-Responsive CCT Protein is a Potential Determinant of Photosynthetic Capacity in Rice. Morita R; Inoue K; Ikeda KI; Hatanaka T; Misoo S; Fukayama H Plant Cell Physiol; 2016 Nov; 57(11):2334-2341. PubMed ID: 27519315 [TBL] [Abstract][Full Text] [Related]
19. Transcriptome dynamics of developing maize leaves and genomewide prediction of cis elements and their cognate transcription factors. Yu CP; Chen SC; Chang YM; Liu WY; Lin HH; Lin JJ; Chen HJ; Lu YJ; Wu YH; Lu MY; Lu CH; Shih AC; Ku MS; Shiu SH; Wu SH; Li WH Proc Natl Acad Sci U S A; 2015 May; 112(19):E2477-86. PubMed ID: 25918418 [TBL] [Abstract][Full Text] [Related]
20. Mosaic analysis of extended auricle1 (eta1) suggests that a two-way signaling pathway is involved in positioning the blade/sheath boundary in Zea mays. Osmont KS; Sadeghian N; Freeling M Dev Biol; 2006 Jul; 295(1):1-12. PubMed ID: 16684518 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]