These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 24547888)

  • 1. Ultrafine particles generated from coloring with scented markers in the presence of ozone.
    Fung CC; Shu S; Zhu Y
    Indoor Air; 2014 Oct; 24(5):503-10. PubMed ID: 24547888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrafine particles in indoor air of a school: possible role of secondary organic aerosols.
    Morawska L; He C; Johnson G; Guo H; Uhde E; Ayoko G
    Environ Sci Technol; 2009 Dec; 43(24):9103-9. PubMed ID: 20000499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ozone and limonene in indoor air: a source of submicron particle exposure.
    Wainman T; Zhang J; Weschler CJ; Lioy PJ
    Environ Health Perspect; 2000 Dec; 108(12):1139-45. PubMed ID: 11133393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Secondary organic aerosol from ozonolysis of biogenic volatile organic compounds: chamber studies of particle and reactive oxygen species formation.
    Chen X; Hopke PK; Carter WP
    Environ Sci Technol; 2011 Jan; 45(1):276-82. PubMed ID: 21121662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degradation of indoor limonene by outdoor ozone: A cascade of secondary organic aerosols.
    Rösch C; Wissenbach DK; Franck U; Wendisch M; Schlink U
    Environ Pollut; 2017 Jul; 226():463-472. PubMed ID: 28456415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrafine particle emissions from essential-oil-based mosquito repellent products.
    Liu J; Fung D; Jiang J; Zhu Y
    Indoor Air; 2014 Jun; 24(3):327-35. PubMed ID: 24245647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Indoor fine particles: the role of terpene emissions from consumer products.
    Sarwar G; Olson DA; Corsi RL; Weschler CJ
    J Air Waste Manag Assoc; 2004 Mar; 54(3):367-77. PubMed ID: 15061618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ozone-initiated particle formation, particle aging, and precursors in a laser printer.
    Wang H; He C; Morawska L; McGarry P; Johnson G
    Environ Sci Technol; 2012 Jan; 46(2):704-12. PubMed ID: 22191732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of human presence on secondary organic aerosols derived from ozone-initiated chemistry in a simulated office environment.
    Fadeyi MO; Weschler CJ; Tham KW; Wu WY; Sultan ZM
    Environ Sci Technol; 2013 Apr; 47(8):3933-41. PubMed ID: 23488675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ozone-initiated VOC and particle emissions from a cleaning agent and an air freshener: risk assessment of acute airway effects.
    Nørgaard AW; Kudal JD; Kofoed-Sørensen V; Koponen IK; Wolkoff P
    Environ Int; 2014 Jul; 68():209-18. PubMed ID: 24769411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The lasting effect of limonene-induced particle formation on air quality in a genuine indoor environment.
    Rösch C; Wissenbach DK; von Bergen M; Franck U; Wendisch M; Schlink U
    Environ Sci Pollut Res Int; 2015 Sep; 22(18):14209-19. PubMed ID: 25966888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transient secondary organic aerosol formation from limonene ozonolysis in indoor environments: impacts of air exchange rates and initial concentration ratios.
    Youssefi S; Waring MS
    Environ Sci Technol; 2014 Jul; 48(14):7899-908. PubMed ID: 24940869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of air freshener emission: the potential health effects.
    Kim S; Hong SH; Bong CK; Cho MH
    J Toxicol Sci; 2015; 40(5):535-50. PubMed ID: 26354370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The formation of ultra-fine particles during ozone-initiated oxidations with terpenes emitted from natural paint.
    Lamorena RB; Jung SG; Bae GN; Lee W
    J Hazard Mater; 2007 Mar; 141(1):245-51. PubMed ID: 16908097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Indoor secondary organic aerosols formation from ozonolysis of monoterpene: An example of d-limonene with ammonia and potential impacts on pulmonary inflammations.
    Niu X; Ho SSH; Ho KF; Huang Y; Cao J; Shen Z; Sun J; Wang X; Wang Y; Lee S; Huang R
    Sci Total Environ; 2017 Feb; 579():212-220. PubMed ID: 27842959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ozone-initiated reactions with mixtures of volatile organic compounds under simulated indoor conditions.
    Fan Z; Lioy P; Weschler C; Fiedler N; Kipen H; Zhang J
    Environ Sci Technol; 2003 May; 37(9):1811-21. PubMed ID: 12775052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The health significance of gas- and particle-phase terpene oxidation products: a review.
    Rohr AC
    Environ Int; 2013 Oct; 60():145-62. PubMed ID: 24036325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of an ozone-generating air purifier on indoor secondary particles in three residential dwellings.
    Hubbard HF; Coleman BK; Sarwar G; Corsi RL
    Indoor Air; 2005 Dec; 15(6):432-44. PubMed ID: 16268833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of an ion generator on indoor air quality in a residential room.
    Waring MS; Siegel JA
    Indoor Air; 2011 Aug; 21(4):267-76. PubMed ID: 21118308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of ozone concentration and temperature on ultra-fine particle and gaseous volatile organic compound formations generated during the ozone-initiated reactions with emitted terpenes from a car air freshener.
    Lamorena RB; Lee W
    J Hazard Mater; 2008 Oct; 158(2-3):471-7. PubMed ID: 18336999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.