BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 24547952)

  • 1. Bathochromic and hyperchromic effects of aluminum salt complexation by anthocyanins from edible sources for blue color development.
    Sigurdson GT; Giusti MM
    J Agric Food Chem; 2014 Jul; 62(29):6955-65. PubMed ID: 24547952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluating the role of metal ions in the bathochromic and hyperchromic responses of cyanidin derivatives in acidic and alkaline pH.
    Sigurdson GT; Robbins RJ; Collins TM; Giusti MM
    Food Chem; 2016 Oct; 208():26-34. PubMed ID: 27132820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acylated Anthocyanins from Red Cabbage and Purple Sweet Potato Can Bind Metal Ions and Produce Stable Blue Colors.
    Fenger JA; Sigurdson GT; Robbins RJ; Collins TM; Giusti MM; Dangles O
    Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33925312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The chemical mechanism for Al3+ complexing with delphinidin: a model for the bluing of hydrangea sepals.
    Schreiber HD; Swink AM; Godsey TD
    J Inorg Biochem; 2010 Jul; 104(7):732-9. PubMed ID: 20394986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bathochromic and stabilising effects of sugar beet pectin and an isolated pectic fraction on anthocyanins exhibiting pyrogallol and catechol moieties.
    Buchweitz M; Carle R; Kammerer DR
    Food Chem; 2012 Dec; 135(4):3010-9. PubMed ID: 22980904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The blue anthocyanin pigments from the blue flowers of Heliophila coronopifolia L. (Brassicaceae).
    Saito N; Tatsuzawa F; Toki K; Shinoda K; Shigihara A; Honda T
    Phytochemistry; 2011 Dec; 72(17):2219-29. PubMed ID: 21903230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and thermal stability of purple-fleshed sweet potato anthocyanins in aqueous solutions with various pH values and fruit juices.
    Li J; Li XD; Zhang Y; Zheng ZD; Qu ZY; Liu M; Zhu SH; Liu S; Wang M; Qu L
    Food Chem; 2013 Feb; 136(3-4):1429-34. PubMed ID: 23194545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extraction and characterization of anthocyanin pigments from Iris flowers and metal complex formation.
    Bahreini Z; Abedi M; Ashori A; Parach A
    Heliyon; 2024 Jun; 10(11):e31795. PubMed ID: 38832280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal Complex Pigment Involved in the Blue Sepal Color Development of Hydrangea.
    Oyama K; Yamada T; Ito D; Kondo T; Yoshida K
    J Agric Food Chem; 2015 Sep; 63(35):7630-5. PubMed ID: 26006163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectral and colorimetric characteristics of metal chelates of acylated cyanidin derivatives.
    Sigurdson GT; Robbins RJ; Collins TM; Giusti MM
    Food Chem; 2017 Apr; 221():1088-1095. PubMed ID: 27979063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Color properties of four cyanidin-pyruvic acid adducts.
    Oliveira J; Fernandes V; Miranda C; Santos-Buelga C; Silva A; de Freitas V; Mateus N
    J Agric Food Chem; 2006 Sep; 54(18):6894-903. PubMed ID: 16939355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of color, pigment, and phenolic stability in yogurt systems colored with nonacylated anthocyanins from Berberis boliviana L. as compared to other natural/synthetic colorants.
    Wallace TC; Giusti MM
    J Food Sci; 2008 May; 73(4):C241-8. PubMed ID: 18460117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploitation of the complexation reaction of ortho-dihydroxylated anthocyanins with aluminum(III) for their quantitative spectrophotometric determination in edible sources.
    Bernal FA; Orduz-Diaz LL; Coy-Barrera E
    Food Chem; 2015 Oct; 185():84-9. PubMed ID: 25952844
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Colour and stability assessment of blue ferric anthocyanin chelates in liquid pectin-stabilised model systems.
    Buchweitz M; Brauch J; Carle R; Kammerer DR
    Food Chem; 2013 Jun; 138(2-3):2026-35. PubMed ID: 23411339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Colorimetric selective quantification of anthocyanins with catechol/pyrogallol moiety in edible plants upon zinc complexation.
    Torrini F; Renai L; Scarano S; Del Bubba M; Palladino P; Minunni M
    Talanta; 2022 Apr; 240():123156. PubMed ID: 34942476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CIELAB coordinates in response to berry skin anthocyanins and their composition in Vitis.
    Liang Z; Sang M; Fan P; Wu B; Wang L; Yang S; Li S
    J Food Sci; 2011 Apr; 76(3):C490-7. PubMed ID: 21535819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Color stability of commercial anthocyanin-based extracts in relation to the phenolic composition. Protective effects by intra- and intermolecular copigmentation.
    Malien-Aubert C; Dangles O; Amiot MJ
    J Agric Food Chem; 2001 Jan; 49(1):170-6. PubMed ID: 11170573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and analysis of anthocyanin components in fruit color variation in Schisandra chinensis.
    Liao J; Zang J; Yuan F; Liu S; Zhang Y; Li H; Piao Z; Li H
    J Sci Food Agric; 2016 Jul; 96(9):3213-9. PubMed ID: 26493497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of hydroxycinnamic acids on blue color expression of cyanidin derivatives and their metal chelates.
    Sigurdson GT; Robbins RJ; Collins TM; Giusti MM
    Food Chem; 2017 Nov; 234():131-138. PubMed ID: 28551216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal degradation of anthocyanins and its impact on color and in vitro antioxidant capacity.
    Sadilova E; Carle R; Stintzing FC
    Mol Nutr Food Res; 2007 Dec; 51(12):1461-71. PubMed ID: 17979100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.