These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 24548062)

  • 1. Hyperbranched polymer-gold nanoparticle assemblies: role of polymer architecture in hybrid assembly formation and SERS activity.
    Dey P; Blakey I; Thurecht KJ; Fredericks PM
    Langmuir; 2014 Mar; 30(8):2249-58. PubMed ID: 24548062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-assembled hyperbranched polymer-gold nanoparticle hybrids: understanding the effect of polymer coverage on assembly size and SERS performance.
    Dey P; Blakey I; Thurecht KJ; Fredericks PM
    Langmuir; 2013 Jan; 29(2):525-33. PubMed ID: 23244573
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self assembly of plasmonic core-satellite nano-assemblies mediated by hyperbranched polymer linkers.
    Dey P; Zhu S; Thurecht KJ; Fredericks PM; Blakey I
    J Mater Chem B; 2014 May; 2(19):2827-2837. PubMed ID: 32261477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gold Nanorod Assemblies: The Roles of Hot-Spot Positioning and Anisotropy in Plasmon Coupling and SERS.
    Dey P; Baumann V; Rodríguez-Fernández J
    Nanomaterials (Basel); 2020 May; 10(5):. PubMed ID: 32423172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tagged Core-Satellite Nanoassemblies: Role of Assembling Sequence on Surface-Enhanced Raman Scattering (SERS) Performance.
    Dey P; Thurecht KJ; Fredericks PM; Blakey I
    Appl Spectrosc; 2019 Dec; 73(12):1428-1435. PubMed ID: 31124368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmonic Nanoassemblies: Tentacles Beat Satellites for Boosting Broadband NIR Plasmon Coupling Providing a Novel Candidate for SERS and Photothermal Therapy.
    Dey P; Tabish TA; Mosca S; Palombo F; Matousek P; Stone N
    Small; 2020 Mar; 16(10):e1906780. PubMed ID: 31997560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bottom-up design of hybrid polymer nanoassemblies elucidates plasmon-enhanced second harmonic generation from nonlinear optical dyes.
    Ishifuji M; Mitsuishi M; Miyashita T
    J Am Chem Soc; 2009 Apr; 131(12):4418-24. PubMed ID: 19275159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlled assembly and plasmonic properties of asymmetric core-satellite nanoassemblies.
    Yoon JH; Lim J; Yoon S
    ACS Nano; 2012 Aug; 6(8):7199-208. PubMed ID: 22827455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anisotropic gold nanoassembly: a study on polarization-dependent and polarization-selective surface-enhanced Raman scattering.
    Hossain MK; Huang GG; Tanaka Y; Kaneko T; Ozaki Y
    Phys Chem Chem Phys; 2015 Feb; 17(6):4268-76. PubMed ID: 25572301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D Plasmon Coupling Assisted Sers on Nanoparticle-Nanocup Array Hybrids.
    Seo S; Chang TW; Liu GL
    Sci Rep; 2018 Feb; 8(1):3002. PubMed ID: 29445092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combinatorial Approach to Find Nanoparticle Assemblies with Maximum Surface-Enhanced Raman Scattering.
    Trinh HD; Kim S; Yun S; Huynh LTM; Yoon S
    ACS Appl Mater Interfaces; 2024 Jan; 16(1):1805-1814. PubMed ID: 38001021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecularly-mediated assemblies of plasmonic nanoparticles for Surface-Enhanced Raman Spectroscopy applications.
    Guerrini L; Graham D
    Chem Soc Rev; 2012 Nov; 41(21):7085-107. PubMed ID: 22833008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hemolysin coregulated protein 1 as a molecular gluing unit for the assembly of nanoparticle hybrid structures.
    Pham TA; Schreiber A; Sturm Née Rosseeva EV; Schiller S; Cölfen H
    Beilstein J Nanotechnol; 2016; 7():351-63. PubMed ID: 27335729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-activity relationships in gold nanoparticle dimers and trimers for surface-enhanced Raman spectroscopy.
    Wustholz KL; Henry AI; McMahon JM; Freeman RG; Valley N; Piotti ME; Natan MJ; Schatz GC; Van Duyne RP
    J Am Chem Soc; 2010 Aug; 132(31):10903-10. PubMed ID: 20681724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoassembly of gold nanoparticles: An active substrate for size-dependent surface-enhanced Raman scattering.
    Hossain MK
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Dec; 242():118759. PubMed ID: 32795952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermo-induced electromagnetic coupling in gold/polymer hybrid plasmonic structures probed by surface-enhanced raman scattering.
    Gehan H; Fillaud L; Chehimi MM; Aubard J; Hohenau A; Felidj N; Mangeney C
    ACS Nano; 2010 Nov; 4(11):6491-500. PubMed ID: 21028846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Split-GFP: SERS Enhancers in Plasmonic Nanocluster Probes.
    Chung T; Koker T; Pinaud F
    Small; 2016 Nov; 12(42):5891-5901. PubMed ID: 27608276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced Raman excitation spectroscopy.
    Kleinman SL; Sharma B; Blaber MG; Henry AI; Valley N; Freeman RG; Natan MJ; Schatz GC; Van Duyne RP
    J Am Chem Soc; 2013 Jan; 135(1):301-8. PubMed ID: 23214430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bimetallic gold-silver nanoplate array as a highly active SERS substrate for detection of streptavidin/biotin assemblies.
    Bi L; Dong J; Xie W; Lu W; Tong W; Tao L; Qian W
    Anal Chim Acta; 2013 Dec; 805():95-100. PubMed ID: 24296148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding nanoparticle assembly: a simulation approach to SERS-active dimers.
    Mark PR; Fabris L
    J Colloid Interface Sci; 2012 Mar; 369(1):134-43. PubMed ID: 22189386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.