These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 24548558)

  • 1. Effect of reflux time on nanoparticle shape.
    Srivastava C; Sushma KV
    Microsc Microanal; 2014 Jun; 20(3):847-51. PubMed ID: 24548558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Entrapment of metal nanoparticles in polymer stomatocytes.
    Wilson DA; Nolte RJ; van Hest JC
    J Am Chem Soc; 2012 Jun; 134(24):9894-7. PubMed ID: 22676061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of colloidal nanocatalysis on the metallic nanoparticle shape: the Suzuki reaction.
    Narayanan R; El-Sayed MA
    Langmuir; 2005 Mar; 21(5):2027-33. PubMed ID: 15723506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ferroxidase activity of apoferritin is increased in the presence of platinum nanoparticles.
    Sennuga A; van Marwijk J; Whiteley CG
    Nanotechnology; 2012 Jan; 23(3):035102. PubMed ID: 22173232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of mesoporous silica nanoparticle-oxaliplatin conjugates for improved anticancer drug delivery.
    He H; Xiao H; Kuang H; Xie Z; Chen X; Jing X; Huang Y
    Colloids Surf B Biointerfaces; 2014 May; 117():75-81. PubMed ID: 24632033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Platinum nanoparticles on carbonaceous materials: the effect of support geometry on nanoparticle mobility, morphology, and melting.
    Morrow BH; Striolo A
    Nanotechnology; 2008 May; 19(19):195711. PubMed ID: 21825729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of Effect of Platinum Nanoparticle Shape on Oxygen Transport in PEMFC Catalyst Layer Using Molecular Dynamics Simulation.
    Kim D; Lim J; Lee JH; Choi J; Kwon SH; Yim SD; Sohn YJ; Lee SG
    ACS Omega; 2023 Sep; 8(35):31801-31810. PubMed ID: 37692235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biological synthesis of platinum nanoparticles with apoferritin.
    Deng QY; Yang B; Wang JF; Whiteley CG; Wang XN
    Biotechnol Lett; 2009 Oct; 31(10):1505-9. PubMed ID: 19504048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting the shape and structure of face-centered cubic gold nanocrystals smaller than 3 nm.
    Barnard AS; Curtiss LA
    Chemphyschem; 2006 Jul; 7(7):1544-53. PubMed ID: 16755641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and characterization of ferromagnetic cobalt nanospheres, nanodiscs and nanocubes.
    Srikala D; Singh VN; Banerjee A; Mehta BR; Patnaik S
    J Nanosci Nanotechnol; 2009 Sep; 9(9):5627-32. PubMed ID: 19928277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Programming Colloidal Crystal Habit with Anisotropic Nanoparticle Building Blocks and DNA Bonds.
    O'Brien MN; Lin HX; Girard M; Olvera de la Cruz M; Mirkin CA
    J Am Chem Soc; 2016 Nov; 138(44):14562-14565. PubMed ID: 27792331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel synthetic approach to creating PtCo alloy nanoparticles by reduction of metal coordination nano-polymers.
    Yamada M; Maesaka M; Kurihara M; Sakamoto M; Miyake M
    Chem Commun (Camb); 2005 Oct; (38):4851-3. PubMed ID: 16193136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A TiO2 nanostructure transformation: from ordered nanotubes to nanoparticles.
    Alivov Y; Fan ZY
    Nanotechnology; 2009 Oct; 20(40):405610. PubMed ID: 19752502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterisation of Co@Fe3O4 core@shell nanoparticles using advanced electron microscopy.
    Knappett BR; Abdulkin P; Ringe E; Jefferson DA; Lozano-Perez S; Rojas TC; Fernández A; Wheatley AE
    Nanoscale; 2013 Jul; 5(13):5765-72. PubMed ID: 23463298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of sustained release fine particles using two-step mechanical powder processing: particle shape modification of drug crystals and dry particle coating with polymer nanoparticle agglomerate.
    Kondo K; Ito N; Niwa T; Danjo K
    Int J Pharm; 2013 Sep; 453(2):523-32. PubMed ID: 23796831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Morphology evolution of fcc Ru nanoparticles under hydrogen atmosphere.
    Liu L; Yu M; Hou B; Wang Q; Zhu B; Jia L; Li D
    Nanoscale; 2019 Apr; 11(16):8037-8046. PubMed ID: 30968086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tailoring the shapes of Fe(x)Pt(100-x) nanoparticles.
    Shukla N; Nigra MM; Nuhfer T; Bartel MA; Gellman AJ
    Nanotechnology; 2009 Feb; 20(6):065602. PubMed ID: 19417390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of synthetic parameters of cobalt nanoparticles: TEM, EDS, spectral and thermal studies.
    Chandra S; Kumar A
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Dec; 98():23-6. PubMed ID: 22982384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of platinum nanoparticles using dried Anacardium occidentale leaf and its catalytic and thermal applications.
    Sheny DS; Philip D; Mathew J
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Oct; 114():267-71. PubMed ID: 23786970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of platinum nanoparticles by reaction of filamentous cyanobacteria with platinum(IV)-chloride complex.
    Lengke MF; Fleet ME; Southam G
    Langmuir; 2006 Aug; 22(17):7318-23. PubMed ID: 16893232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.