BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 24548595)

  • 1. Multi-scale visualization of dynamic changes in poplar cell walls during alkali pretreatment.
    Ji Z; Ma J; Xu F
    Microsc Microanal; 2014 Apr; 20(2):566-76. PubMed ID: 24548595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using confocal Raman microscopy to real-time monitor poplar cell wall swelling and dissolution during ionic liquid pretreatment.
    Zhang X; Ma J; Ji Z; Yang GH; Zhou X; Xu F
    Microsc Res Tech; 2014 Aug; 77(8):609-18. PubMed ID: 24861030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical imaging of poplar wood cell walls by confocal Raman microscopy.
    Gierlinger N; Schwanninger M
    Plant Physiol; 2006 Apr; 140(4):1246-54. PubMed ID: 16489138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Method for automatically identifying spectra of different wood cell wall layers in Raman imaging data set.
    Zhang X; Ji Z; Zhou X; Ma JF; Hu YH; Xu F
    Anal Chem; 2015 Jan; 87(2):1344-50. PubMed ID: 25531490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hemicelluloses removal in autohydrolysis pretreatment enhances the subsequent alkali impregnation effectiveness of poplar sapwood.
    Jiang X; Hou Q; Liu W; Zhang H; Qin Q
    Bioresour Technol; 2016 Dec; 222():361-366. PubMed ID: 27741474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the Micromorphology and Topochemistry of Poplar Wood during Mild Ionic Liquid Pretreatment for Improving Enzymatic Saccharification.
    Chen S; Zhang X; Ling Z; Xu F
    Molecules; 2017 Jan; 22(1):. PubMed ID: 28085065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Raman Spectra Study on Topochemistry in Miscanthus × giganteus Cell Walls During Dilute Acid Pretreatment].
    He C; Zhou X; Yao CL; Xu F
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Sep; 35(9):2553-7. PubMed ID: 26669166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reversible swelling of the cell wall of poplar biomass by ionic liquid at room temperature.
    Lucas M; Wagner GL; Nishiyama Y; Hanson L; Samayam IP; Schall CA; Langan P; Rector KD
    Bioresour Technol; 2011 Mar; 102(6):4518-23. PubMed ID: 21247757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transmission electron microscopy, fluorescence microscopy, and confocal raman microscopic analysis of ultrastructural and compositional heterogeneity of Cornus alba L. wood cell wall.
    Ma J; Ji Z; Zhou X; Zhang Z; Xu F
    Microsc Microanal; 2013 Feb; 19(1):243-53. PubMed ID: 23380008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioinspired lignocellulosic films to understand the mechanical properties of lignified plant cell walls at nanoscale.
    Muraille L; Aguié-Béghin V; Chabbert B; Molinari M
    Sci Rep; 2017 Mar; 7():44065. PubMed ID: 28276462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical and spatial differentiation of syringyl and guaiacyl lignins in poplar wood via time-of-flight secondary ion mass spectrometry.
    Zhou C; Li Q; Chiang VL; Lucia LA; Griffis DP
    Anal Chem; 2011 Sep; 83(18):7020-6. PubMed ID: 21851065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Application of the Raman spectroscopy to the study of plant cell walls].
    Ma J; Ma JF; Zhang X; Xu F
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 May; 33(5):1239-43. PubMed ID: 23905327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural elucidation of Eucalyptus lignin and its dynamic changes in the cell walls during an integrated process of ionic liquids and successive alkali treatments.
    Li HY; Wang CZ; Chen X; Cao XF; Sun SN; Sun RC
    Bioresour Technol; 2016 Dec; 222():175-181. PubMed ID: 27718400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial organization of cellulose microfibrils and matrix polysaccharides in primary plant cell walls as imaged by multichannel atomic force microscopy.
    Zhang T; Zheng Y; Cosgrove DJ
    Plant J; 2016 Jan; 85(2):179-92. PubMed ID: 26676644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How does plant cell wall nanoscale architecture correlate with enzymatic digestibility?
    Ding SY; Liu YS; Zeng Y; Himmel ME; Baker JO; Bayer EA
    Science; 2012 Nov; 338(6110):1055-60. PubMed ID: 23180856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detecting cellulase penetration into corn stover cell walls by immuno-electron microscopy.
    Donohoe BS; Selig MJ; Viamajala S; Vinzant TB; Adney WS; Himmel ME
    Biotechnol Bioeng; 2009 Jun; 103(3):480-9. PubMed ID: 19266575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasticity, elasticity, and adhesion energy of plant cell walls: nanometrology of lignin loss using atomic force microscopy.
    Farahi RH; Charrier AM; Tolbert A; Lereu AL; Ragauskas A; Davison BH; Passian A
    Sci Rep; 2017 Mar; 7(1):152. PubMed ID: 28273953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-invasive imaging of cellulose microfibril orientation within plant cell walls by polarized Raman microspectroscopy.
    Sun L; Singh S; Joo M; Vega-Sanchez M; Ronald P; Simmons BA; Adams P; Auer M
    Biotechnol Bioeng; 2016 Jan; 113(1):82-90. PubMed ID: 26137889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imaging the dynamic deposition of cell wall polymer in xylem and phloem in Populus × euramericana.
    Jin K; Liu X; Wang K; Jiang Z; Tian G; Yang S; Shang L; Ma J
    Planta; 2018 Oct; 248(4):849-858. PubMed ID: 29938358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pretreatment of corn stover and hybrid poplar by sodium hydroxide and hydrogen peroxide.
    Gupta R; Lee YY
    Biotechnol Prog; 2010; 26(4):1180-6. PubMed ID: 20730772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.