These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 24548625)

  • 1. Leg automaticity is stronger than arm automaticity during simultaneous arm and leg cycling.
    Sakamoto M; Tazoe T; Nakajima T; Endoh T; Komiyama T
    Neurosci Lett; 2014 Apr; 564():62-6. PubMed ID: 24548625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Voluntary changes in leg cadence modulate arm cadence during simultaneous arm and leg cycling.
    Sakamoto M; Tazoe T; Nakajima T; Endoh T; Shiozawa S; Komiyama T
    Exp Brain Res; 2007 Jan; 176(1):188-92. PubMed ID: 17061091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of arm and leg movement during human locomotion.
    Zehr EP; Duysens J
    Neuroscientist; 2004 Aug; 10(4):347-61. PubMed ID: 15271262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulations of interlimb and intralimb cutaneous reflexes during simultaneous arm and leg cycling in humans.
    Sakamoto M; Endoh T; Nakajima T; Tazoe T; Shiozawa S; Komiyama T
    Clin Neurophysiol; 2006 Jun; 117(6):1301-11. PubMed ID: 16651023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural coupling between the arms and legs during rhythmic locomotor-like cycling movement.
    Balter JE; Zehr EP
    J Neurophysiol; 2007 Feb; 97(2):1809-18. PubMed ID: 17065245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanical assessments of the effect of visual feedback on cycling for patients with stroke.
    Lin SI; Lo CC; Lin PY; Chen JJ
    J Electromyogr Kinesiol; 2012 Aug; 22(4):582-8. PubMed ID: 22538084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of afferent feedback and central motor commands on soleus H-reflex suppression during arm cycling.
    Hundza SR; de Ruiter GC; Klimstra M; Zehr EP
    J Neurophysiol; 2012 Dec; 108(11):3049-58. PubMed ID: 22956797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arm to leg coordination in humans during walking, creeping and swimming activities.
    Wannier T; Bastiaanse C; Colombo G; Dietz V
    Exp Brain Res; 2001 Dec; 141(3):375-9. PubMed ID: 11715082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural control of rhythmic human movement: the common core hypothesis.
    Zehr EP
    Exerc Sport Sci Rev; 2005 Jan; 33(1):54-60. PubMed ID: 15640722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arm sway holds sway: locomotor-like modulation of leg reflexes when arms swing in alternation.
    Massaad F; Levin O; Meyns P; Drijkoningen D; Swinnen SP; Duysens J
    Neuroscience; 2014 Jan; 258():34-46. PubMed ID: 24144625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. VO2max responses in separate and combined arm and leg air-braked ergometer exercise.
    Nagle FJ; Richie JP; Giese MD
    Med Sci Sports Exerc; 1984 Dec; 16(6):563-6. PubMed ID: 6513773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coordination between arm and leg movements during locomotion.
    Donker SF; Beek PJ; Wagenaar RC; Mulder T
    J Mot Behav; 2001 Mar; 33(1):86-102. PubMed ID: 11303522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects on the crank torque profile when changing pedalling cadence in level ground and uphill road cycling.
    Bertucci W; Grappe F; Girard A; Betik A; Rouillon JD
    J Biomech; 2005 May; 38(5):1003-10. PubMed ID: 15797582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ventilatory response pattern of Nordic skiers during simulated poling.
    Faria IE
    J Sports Sci; 1994 Jun; 12(3):255-9. PubMed ID: 8064972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxygen uptake and heart rate kinetics during heavy exercise: a comparison between arm cranking and leg cycling.
    Schneider DA; Wing AN; Morris NR
    Eur J Appl Physiol; 2002 Nov; 88(1-2):100-6. PubMed ID: 12436276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Forward and backward arm cycling are regulated by equivalent neural mechanisms.
    Zehr EP; Hundza SR
    J Neurophysiol; 2005 Jan; 93(1):633-40. PubMed ID: 15317838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control strategies for integration of electric motor assist and functional electrical stimulation in paraplegic cycling: utility for exercise testing and mobile cycling.
    Hunt KJ; Stone B; NegÄrd NO; Schauer T; Fraser MH; Cathcart AJ; Ferrario C; Ward SA; Grant S
    IEEE Trans Neural Syst Rehabil Eng; 2004 Mar; 12(1):89-101. PubMed ID: 15068192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rhythmic arm cycling modulates Hoffmann reflex excitability differentially in the ankle flexor and extensor muscles.
    Dragert K; Zehr EP
    Neurosci Lett; 2009 Feb; 450(3):235-8. PubMed ID: 19028550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of arm and leg locomotor coupling with augmented cutaneous feedback from the hand.
    Zehr EP; Klimstra M; Dragert K; Barzi Y; Bowden MG; Javan B; Phadke C
    J Neurophysiol; 2007 Sep; 98(3):1810-4. PubMed ID: 17615121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of acceptable physical work loads based on responses to prolonged arm and leg exercise.
    Aminoff T; Smolander J; Korhonen O; Louhevaara V
    Ergonomics; 1998 Jan; 41(1):109-20. PubMed ID: 9468809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.