These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 24548721)
1. Structural and functional effects of two stabilizing substitutions, D137L and G126R, in the middle part of α-tropomyosin molecule. Matyushenko AM; Artemova NV; Shchepkin DV; Kopylova GV; Bershitsky SY; Tsaturyan AK; Sluchanko NN; Levitsky DI FEBS J; 2014 Apr; 281(8):2004-16. PubMed ID: 24548721 [TBL] [Abstract][Full Text] [Related]
2. Effects of two stabilizing substitutions, D137L and G126R, in the middle part of α-tropomyosin on the domain structure of its molecule. Matyushenko AM; Artemova NV; Sluchanko NN; Levitsky DI Biophys Chem; 2015 Jan; 196():77-85. PubMed ID: 25451681 [TBL] [Abstract][Full Text] [Related]
3. Functional role of the core gap in the middle part of tropomyosin. Matyushenko AM; Shchepkin DV; Kopylova GV; Bershitsky SY; Koubassova NA; Tsaturyan AK; Levitsky DI FEBS J; 2018 Mar; 285(5):871-886. PubMed ID: 29278453 [TBL] [Abstract][Full Text] [Related]
4. Cooperativity of myosin interaction with thin filaments is enhanced by stabilizing substitutions in tropomyosin. Shchepkin DV; Nabiev SR; Kopylova GV; Matyushenko AM; Levitsky DI; Bershitsky SY; Tsaturyan AK J Muscle Res Cell Motil; 2017 Apr; 38(2):183-191. PubMed ID: 28540577 [TBL] [Abstract][Full Text] [Related]
5. The Relaxation Properties of Myofibrils Are Compromised by Amino Acids that Stabilize α-Tropomyosin. Scellini B; Piroddi N; Matyushenko AM; Levitsky DI; Poggesi C; Lehrer SS; Tesi C Biophys J; 2017 Jan; 112(2):376-387. PubMed ID: 28122223 [TBL] [Abstract][Full Text] [Related]
6. The second half of the fourth period of tropomyosin is a key region for Ca(2+)-dependent regulation of striated muscle thin filaments. Sakuma A; Kimura-Sakiyama C; Onoue A; Shitaka Y; Kusakabe T; Miki M Biochemistry; 2006 Aug; 45(31):9550-8. PubMed ID: 16878989 [TBL] [Abstract][Full Text] [Related]
7. Study of regulatory effect of tropomyosin on actin-myosin interaction in skeletal muscle by in vitro motility assay. Kopylova GV; Shchepkin DV; Nikitina LV Biochemistry (Mosc); 2013 Mar; 78(3):260-6. PubMed ID: 23586719 [TBL] [Abstract][Full Text] [Related]
8. Solution NMR structure of the junction between tropomyosin molecules: implications for actin binding and regulation. Greenfield NJ; Huang YJ; Swapna GV; Bhattacharya A; Rapp B; Singh A; Montelione GT; Hitchcock-DeGregori SE J Mol Biol; 2006 Nov; 364(1):80-96. PubMed ID: 16999976 [TBL] [Abstract][Full Text] [Related]
9. Stabilization of the Central Part of Tropomyosin Molecule Alters the Ca2+-sensitivity of Actin-Myosin Interaction. Shchepkin DV; Matyushenko AM; Kopylova GV; Artemova NV; Bershitsky SY; Tsaturyan AK; Levitsky DI Acta Naturae; 2013 Jul; 5(3):126-9. PubMed ID: 24303208 [TBL] [Abstract][Full Text] [Related]
10. Dual requirement for flexibility and specificity for binding of the coiled-coil tropomyosin to its target, actin. Singh A; Hitchcock-DeGregori SE Structure; 2006 Jan; 14(1):43-50. PubMed ID: 16407064 [TBL] [Abstract][Full Text] [Related]
11. Conserved Asp-137 is important for both structure and regulatory functions of cardiac α-tropomyosin (α-TM) in a novel transgenic mouse model expressing α-TM-D137L. Yar S; Chowdhury SAK; Davis RT; Kobayashi M; Monasky MM; Rajan S; Wolska BM; Gaponenko V; Kobayashi T; Wieczorek DF; Solaro RJ J Biol Chem; 2013 Jun; 288(23):16235-16246. PubMed ID: 23609439 [TBL] [Abstract][Full Text] [Related]
12. Impact of A134 and E218 Amino Acid Residues of Tropomyosin on Its Flexibility and Function. Marchenko MA; Nefedova VV; Yampolskaya DS; Kopylova GV; Shchepkin DV; Bershitsky SY; Koubassova NA; Tsaturyan AK; Levitsky DI; Matyushenko AM Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33218166 [TBL] [Abstract][Full Text] [Related]
13. Tropomyosin: double helix from the protein world. Nevzorov IA; Levitsky DI Biochemistry (Mosc); 2011 Dec; 76(13):1507-27. PubMed ID: 22339601 [TBL] [Abstract][Full Text] [Related]
14. Conserved Asp-137 imparts flexibility to tropomyosin and affects function. Sumida JP; Wu E; Lehrer SS J Biol Chem; 2008 Mar; 283(11):6728-34. PubMed ID: 18165684 [TBL] [Abstract][Full Text] [Related]
15. Effect of Cardiomyopathic Mutations in Tropomyosin on Calcium Regulation of the Actin-Myosin Interaction in Skeletal Muscle. Kopylova GV; Shchepkin DV; Borovkov DI; Matyushenko AM Bull Exp Biol Med; 2016 Nov; 162(1):42-44. PubMed ID: 27878731 [TBL] [Abstract][Full Text] [Related]
17. Study of reciprocal effects of cardiac myosin and tropomyosin isoforms on actin-myosin interaction with in vitro motility assay. Shchepkin DV; Kopylova GV; Nikitina LV Biochem Biophys Res Commun; 2011 Nov; 415(1):104-8. PubMed ID: 22020102 [TBL] [Abstract][Full Text] [Related]
18. Structural basis for Ca2+-regulated muscle relaxation at interaction sites of troponin with actin and tropomyosin. Murakami K; Yumoto F; Ohki SY; Yasunaga T; Tanokura M; Wakabayashi T J Mol Biol; 2005 Sep; 352(1):178-201. PubMed ID: 16061251 [TBL] [Abstract][Full Text] [Related]
19. Regulatory properties of recombinant tropomyosins containing 5-hydroxytryptophan: Ca2+-binding to troponin results in a conformational change in a region of tropomyosin outside the troponin binding site. Farah CS; Reinach FC Biochemistry; 1999 Aug; 38(32):10543-51. PubMed ID: 10441151 [TBL] [Abstract][Full Text] [Related]
20. Tropomyosin and actin isoforms modulate the localization of tropomyosin strands on actin filaments. Lehman W; Hatch V; Korman V; Rosol M; Thomas L; Maytum R; Geeves MA; Van Eyk JE; Tobacman LS; Craig R J Mol Biol; 2000 Sep; 302(3):593-606. PubMed ID: 10986121 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]