BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 24548777)

  • 1. Cystic fibrosis: evidence for gut inflammation.
    Munck A
    Int J Biochem Cell Biol; 2014 Jul; 52():180-3. PubMed ID: 24548777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of laxative and N-acetylcysteine on mucus accumulation, bacterial load, transit, and inflammation in the cystic fibrosis mouse small intestine.
    De Lisle RC; Roach E; Jansson K
    Am J Physiol Gastrointest Liver Physiol; 2007 Sep; 293(3):G577-84. PubMed ID: 17615175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iron Homeostasis and Inflammatory Status in Mice Deficient for the Cystic Fibrosis Transmembrane Regulator.
    Deschemin JC; Allouche S; Brouillard F; Vaulont S
    PLoS One; 2015; 10(12):e0145685. PubMed ID: 26709821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cystic fibrosis mouse model-dependent intestinal structure and gut microbiome.
    Bazett M; Honeyman L; Stefanov AN; Pope CE; Hoffman LR; Haston CK
    Mamm Genome; 2015 Jun; 26(5-6):222-34. PubMed ID: 25721416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Small intestinal glucose absorption in cystic fibrosis: a study in human and transgenic DeltaF508 cystic fibrosis mouse tissues.
    Hardcastle J; Harwood MD; Taylor CJ
    J Pharm Pharmacol; 2004 Mar; 56(3):329-38. PubMed ID: 15025858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacterial overgrowth in the cystic fibrosis transmembrane conductance regulator null mouse small intestine.
    Norkina O; Burnett TG; De Lisle RC
    Infect Immun; 2004 Oct; 72(10):6040-9. PubMed ID: 15385508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lubiprostone ameliorates the cystic fibrosis mouse intestinal phenotype.
    De Lisle RC; Mueller R; Roach E
    BMC Gastroenterol; 2010 Sep; 10():107. PubMed ID: 20843337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The cystic fibrosis intestine.
    De Lisle RC; Borowitz D
    Cold Spring Harb Perspect Med; 2013 Sep; 3(9):a009753. PubMed ID: 23788646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding how cystic fibrosis mutations disrupt CFTR function: from single molecules to animal models.
    Wang Y; Wrennall JA; Cai Z; Li H; Sheppard DN
    Int J Biochem Cell Biol; 2014 Jul; 52():47-57. PubMed ID: 24727426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Airway inflammation in cystic fibrosis: molecular mechanisms and clinical implications.
    Cohen-Cymberknoh M; Kerem E; Ferkol T; Elizur A
    Thorax; 2013 Dec; 68(12):1157-62. PubMed ID: 23704228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transient receptor potential canonical channel 6 links Ca2+ mishandling to cystic fibrosis transmembrane conductance regulator channel dysfunction in cystic fibrosis.
    Antigny F; Norez C; Dannhoffer L; Bertrand J; Raveau D; Corbi P; Jayle C; Becq F; Vandebrouck C
    Am J Respir Cell Mol Biol; 2011 Jan; 44(1):83-90. PubMed ID: 20203293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strain-dependent pulmonary gene expression profiles of a cystic fibrosis mouse model.
    Haston CK; Cory S; Lafontaine L; Dorion G; Hallett MT
    Physiol Genomics; 2006 Apr; 25(2):336-45. PubMed ID: 16614460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Eradication of small intestinal bacterial overgrowth in the cystic fibrosis mouse reduces mucus accumulation.
    De Lisle RC; Roach EA; Norkina O
    J Pediatr Gastroenterol Nutr; 2006 Jan; 42(1):46-52. PubMed ID: 16385253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cystic fibrosis transmembrane conductance regulator protein (CFTR) expression in the developing human brain: comparative immunohistochemical study between patients with normal and mutated CFTR.
    Marcorelles P; Friocourt G; Uguen A; Ledé F; Férec C; Laquerrière A
    J Histochem Cytochem; 2014 Nov; 62(11):791-801. PubMed ID: 25062999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Defective regulatory volume decrease in human cystic fibrosis tracheal cells because of altered regulation of intermediate conductance Ca2+-dependent potassium channels.
    Vázquez E; Nobles M; Valverde MA
    Proc Natl Acad Sci U S A; 2001 Apr; 98(9):5329-34. PubMed ID: 11309505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimal complement-mediated phagocytosis of Pseudomonas aeruginosa by monocytes is cystic fibrosis transmembrane conductance regulator-dependent.
    Van de Weert-van Leeuwen PB; Van Meegen MA; Speirs JJ; Pals DJ; Rooijakkers SH; Van der Ent CK; Terheggen-Lagro SW; Arets HG; Beekman JM
    Am J Respir Cell Mol Biol; 2013 Sep; 49(3):463-70. PubMed ID: 23617438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accumulation of ceramide in the trachea and intestine of cystic fibrosis mice causes inflammation and cell death.
    Becker KA; Tümmler B; Gulbins E; Grassmé H
    Biochem Biophys Res Commun; 2010 Dec; 403(3-4):368-74. PubMed ID: 21078296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Gut-Lung Axis in Cystic Fibrosis.
    Price CE; O'Toole GA
    J Bacteriol; 2021 Sep; 203(20):e0031121. PubMed ID: 34339302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toll-like receptor-4 genotype influences the survival of cystic fibrosis mice.
    Canale-Zambrano JC; Auger ML; Haston CK
    Am J Physiol Gastrointest Liver Physiol; 2010 Aug; 299(2):G381-90. PubMed ID: 20522639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cystic fibrosis is associated with a defect in apical receptor-mediated endocytosis in mouse and human kidney.
    Jouret F; Bernard A; Hermans C; Dom G; Terryn S; Leal T; Lebecque P; Cassiman JJ; Scholte BJ; de Jonge HR; Courtoy PJ; Devuyst O
    J Am Soc Nephrol; 2007 Mar; 18(3):707-18. PubMed ID: 17287432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.