BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 24548779)

  • 1. Production of Jatropha biodiesel fuel over sulfonic acid-based solid acids.
    Chen SY; Lao-Ubol S; Mochizuki T; Abe Y; Toba M; Yoshimura Y
    Bioresour Technol; 2014 Apr; 157():346-50. PubMed ID: 24548779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Syntheses of biodiesel precursors: sulfonic acid catalysts for condensation of biomass-derived platform molecules.
    Balakrishnan M; Sacia ER; Bell AT
    ChemSusChem; 2014 Apr; 7(4):1078-85. PubMed ID: 24596031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pore-expanded SBA-15 sulfonic acid silicas for biodiesel synthesis.
    Dacquin JP; Lee AF; Pirez C; Wilson K
    Chem Commun (Camb); 2012 Jan; 48(2):212-4. PubMed ID: 22089025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-grade oils and fats: effect of several impurities on biodiesel production over sulfonic acid heterogeneous catalysts.
    Morales G; Bautista LF; Melero JA; Iglesias J; Sánchez-Vázquez R
    Bioresour Technol; 2011 Oct; 102(20):9571-8. PubMed ID: 21862322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A green recyclable SO(3)H-carbon catalyst derived from glycerol for the production of biodiesel from FFA-containing karanja (Pongamia glabra) oil in a single step.
    Prabhavathi Devi BL; Vijai Kumar Reddy T; Vijaya Lakshmi K; Prasad RB
    Bioresour Technol; 2014 Feb; 153():370-3. PubMed ID: 24373712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biodiesel production from waste cooking oil using a heterogeneous catalyst from pyrolyzed rice husk.
    Li M; Zheng Y; Chen Y; Zhu X
    Bioresour Technol; 2014 Feb; 154():345-8. PubMed ID: 24405650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-step in situ biodiesel production from microalgae with high free fatty acid content.
    Dong T; Wang J; Miao C; Zheng Y; Chen S
    Bioresour Technol; 2013 May; 136():8-15. PubMed ID: 23548399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids.
    Berchmans HJ; Hirata S
    Bioresour Technol; 2008 Apr; 99(6):1716-21. PubMed ID: 17531473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodiesel production from Jatropha curcas: a critical review.
    Abdulla R; Chan ES; Ravindra P
    Crit Rev Biotechnol; 2011 Mar; 31(1):53-64. PubMed ID: 20572796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous production of high quality biodiesel and glycerin from Jatropha oil using ion-exchange resins as catalysts and adsorbent.
    Shibasaki-Kitakawa N; Kanagawa K; Nakashima K; Yonemoto T
    Bioresour Technol; 2013 Aug; 142():732-6. PubMed ID: 23796424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Esterification of fatty acid catalyzed by hydrothermally stable propylsulfonic acid-functionalized mesoporous silica SBA-15.
    Mar WW; Somsook E
    J Oleo Sci; 2013; 62(6):435-42. PubMed ID: 23728335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of fatty acid methyl ester from crude jatropha (Jatropha curcas Linnaeus) oil using aluminium oxide modified Mg-Zn heterogeneous catalyst.
    Olutoye MA; Hameed BH
    Bioresour Technol; 2011 Jun; 102(11):6392-8. PubMed ID: 21486692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-step supercritical dimethyl carbonate method for biodiesel production from Jatropha curcas oil.
    Ilham Z; Saka S
    Bioresour Technol; 2010 Apr; 101(8):2735-40. PubMed ID: 19932022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Etherification of biodiesel-derived glycerol with ethanol for fuel formulation over sulfonic modified catalysts.
    Melero JA; Vicente G; Paniagua M; Morales G; Muñoz P
    Bioresour Technol; 2012 Jan; 103(1):142-51. PubMed ID: 22018752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biotechnological processes for biodiesel production using alternative oils.
    Azócar L; Ciudad G; Heipieper HJ; Navia R
    Appl Microbiol Biotechnol; 2010 Oct; 88(3):621-36. PubMed ID: 20697706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microwave assisted biodiesel production from Jatropha curcas L. seed by two-step in situ process: optimization using response surface methodology.
    Jaliliannosrati H; Amin NA; Talebian-Kiakalaieh A; Noshadi I
    Bioresour Technol; 2013 May; 136():565-73. PubMed ID: 23567732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodiesel production from Jatropha oil by catalytic and non-catalytic approaches: an overview.
    Juan JC; Kartika DA; Wu TY; Hin TY
    Bioresour Technol; 2011 Jan; 102(2):452-60. PubMed ID: 21094045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functionalized Fe3O4@silica core-shell nanoparticles as microalgae harvester and catalyst for biodiesel production.
    Chiang YD; Dutta S; Chen CT; Huang YT; Lin KS; Wu JC; Suzuki N; Yamauchi Y; Wu KC
    ChemSusChem; 2015 Mar; 8(5):789-94. PubMed ID: 25477296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sulfonated graphene oxide as effective catalyst for conversion of 5-(hydroxymethyl)-2-furfural into biofuels.
    Antunes MM; Russo PA; Wiper PV; Veiga JM; Pillinger M; Mafra L; Evtuguin DV; Pinna N; Valente AA
    ChemSusChem; 2014 Mar; 7(3):804-12. PubMed ID: 24497470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Esterification of free fatty acids using water-tolerable Amberlyst as a heterogeneous catalyst.
    Park JY; Kim DK; Lee JS
    Bioresour Technol; 2010 Jan; 101 Suppl 1():S62-5. PubMed ID: 19362818
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.