These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 2454911)

  • 21. Inducible high-level expression of heterologous genes in Bacillus megaterium using the regulatory elements of the xylose-utilization operon.
    Rygus T; Hillen W
    Appl Microbiol Biotechnol; 1991 Aug; 35(5):594-9. PubMed ID: 1367576
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Organization and characterization of three genes involved in D-xylose catabolism in Lactobacillus pentosus.
    Lokman BC; van Santen P; Verdoes JC; Krüse J; Leer RJ; Posno M; Pouwels PH
    Mol Gen Genet; 1991 Nov; 230(1-2):161-9. PubMed ID: 1660563
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Promoter activity detection and transcription initiation site determination of the D-xylose isomerase gene of Streptomyces diastaticus strain No.7 M1033].
    Hang J; Wang Y; Dai X; Cui T; Niu L; Wang C; Xu X
    Yi Chuan Xue Bao; 1995; 22(3):239-44. PubMed ID: 8851871
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Promoter analysis and transcriptional regulation of Lactobacillus pentosus genes involved in xylose catabolism.
    Lokman BC; Leer RJ; van Sorge R; Pouwels PH
    Mol Gen Genet; 1994 Oct; 245(1):117-25. PubMed ID: 7845354
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chloramphenicol-inducible gene expression in Bacillus subtilis is independent of the chloramphenicol acetyltransferase structural gene and its promoter.
    Mongkolsuk S; Ambulos NP; Lovett PS
    J Bacteriol; 1984 Oct; 160(1):1-8. PubMed ID: 6090404
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Catabolite repression of the Bacillus subtilis hut operon requires a cis-acting site located downstream of the transcription initiation site.
    Wray LV; Pettengill FK; Fisher SH
    J Bacteriol; 1994 Apr; 176(7):1894-902. PubMed ID: 8144455
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regulation of Staphylococcus xylosus xylose utilization genes at the molecular level.
    Sizemore C; Wieland B; Götz F; Hillen W
    J Bacteriol; 1992 May; 174(9):3042-8. PubMed ID: 1569030
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regulation of expression of the Lactobacillus pentosus xylAB operon.
    Lokman BC; Heerikhuisen M; Leer RJ; van den Broek A; Borsboom Y; Chaillou S; Postma PW; Pouwels PH
    J Bacteriol; 1997 Sep; 179(17):5391-7. PubMed ID: 9286992
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cloning and characterization of the xyl genes from Escherichia coli.
    Rosenfeld SA; Stevis PE; Ho NW
    Mol Gen Genet; 1984; 194(3):410-5. PubMed ID: 6330500
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Protein expression from an Escherichia coli/Bacillus subtilis multifunctional shuttle plasmid with synthetic promoter sequences.
    Trumble WR; Sherf BA; Reasoner JL; Seward PD; Denovan BA; Douthart RJ; West JW
    Protein Expr Purif; 1992 Jun; 3(3):169-77. PubMed ID: 1392613
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cloning and characterization of transcription of the xylAB operon in Thermoanaerobacter ethanolicus.
    Erbeznik M; Dawson KA; Strobel HJ
    J Bacteriol; 1998 Mar; 180(5):1103-9. PubMed ID: 9495747
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transcription initiation region of the srfA operon, which is controlled by the comP-comA signal transduction system in Bacillus subtilis.
    Nakano MM; Xia LA; Zuber P
    J Bacteriol; 1991 Sep; 173(17):5487-93. PubMed ID: 1715856
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analysis of Bacillus subtilis hut operon expression indicates that histidine-dependent induction is mediated primarily by transcriptional antitermination and that amino acid repression is mediated by two mechanisms: regulation of transcription initiation and inhibition of histidine transport.
    Wray LV; Fisher SH
    J Bacteriol; 1994 Sep; 176(17):5466-73. PubMed ID: 8071225
    [TBL] [Abstract][Full Text] [Related]  

  • 34. cis-acting sites in the transcript of the Bacillus subtilis trp operon regulate expression of the operon.
    Kuroda MI; Henner D; Yanofsky C
    J Bacteriol; 1988 Jul; 170(7):3080-8. PubMed ID: 3133360
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Amplification of D-xylose and D-glucose isomerase activities in Escherichia coli by gene cloning.
    Wovcha MG; Steuerwald DL; Brooks KE
    Appl Environ Microbiol; 1983 Apr; 45(4):1402-4. PubMed ID: 6344793
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Isolation and expression of a constitutive variant of the chloramphenicol-inducible plasmid gene cat-86 under control of the Bacillus subtilis 168 amylase promoter.
    Nicholson WL; Chambliss GH; Buckbinder L; Ambulos NP; Lovett PS
    Gene; 1985; 35(1-2):113-20. PubMed ID: 3928441
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A promoter whose utilization is temporally regulated during sporulation in Bacillus subtilis.
    Stephens MA; Lang N; Sandman K; Losick R
    J Mol Biol; 1984 Jul; 176(3):333-48. PubMed ID: 6205155
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sequential action of two-component genetic switches regulates the PHO regulon in Bacillus subtilis.
    Hulett FM; Lee J; Shi L; Sun G; Chesnut R; Sharkova E; Duggan MF; Kapp N
    J Bacteriol; 1994 Mar; 176(5):1348-58. PubMed ID: 8113174
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A xylose-inducible Bacillus subtilis integration vector and its application.
    Kim L; Mogk A; Schumann W
    Gene; 1996 Nov; 181(1-2):71-6. PubMed ID: 8973310
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mutations of the Escherichia coli lacUV5 promoter resulting in increased expression in Bacillus subtilis.
    Henkin TM; Sonenshein AL
    Mol Gen Genet; 1987 Oct; 209(3):467-74. PubMed ID: 3123885
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.