These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 24549111)

  • 1. Cuckoo search epistasis: a new method for exploring significant genetic interactions.
    Aflakparast M; Salimi H; Gerami A; Dubé MP; Visweswaran S; Masoudi-Nejad A
    Heredity (Edinb); 2014 Jun; 112(6):666-74. PubMed ID: 24549111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Learning genetic epistasis using Bayesian network scoring criteria.
    Jiang X; Neapolitan RE; Barmada MM; Visweswaran S
    BMC Bioinformatics; 2011 Mar; 12():89. PubMed ID: 21453508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic studies of complex human diseases: characterizing SNP-disease associations using Bayesian networks.
    Han B; Chen XW; Talebizadeh Z; Xu H
    BMC Syst Biol; 2012; 6 Suppl 3(Suppl 3):S14. PubMed ID: 23281790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mining pure, strict epistatic interactions from high-dimensional datasets: ameliorating the curse of dimensionality.
    Jiang X; Neapolitan RE
    PLoS One; 2012; 7(10):e46771. PubMed ID: 23071633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Novel Detection Method for High-Order SNP Epistatic Interactions Based on Explicit-Encoding-Based Multitasking Harmony Search.
    Tuo S; Jiang J
    Interdiscip Sci; 2024 Sep; 16(3):688-711. PubMed ID: 38954231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GEP-EpiSeeker: a gene expression programming-based method for epistatic interaction detection in genome-wide association studies.
    Peng YZ; Lin Y; Huang Y; Li Y; Luo G; Liao J
    BMC Genomics; 2021 Dec; 22(Suppl 1):910. PubMed ID: 34930147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Informative Bayesian Model Selection: a method for identifying interactions in genome-wide data.
    Aflakparast M; Masoudi-Nejad A; Bozorgmehr JH; Visweswaran S
    Mol Biosyst; 2014 Oct; 10(10):2654-62. PubMed ID: 25070634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SEEI: spherical evolution with feedback mechanism for identifying epistatic interactions.
    Tang DY; Mao YJ; Zhao J; Yang J; Li SY; Ren FX; Zheng J
    BMC Genomics; 2024 May; 25(1):462. PubMed ID: 38735952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Searching Genome-Wide Multi-Locus Associations for Multiple Diseases Based on Bayesian Inference.
    Guo X; Zhang J; Cai Z; Du DZ; Pan Y
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(3):600-610. PubMed ID: 26887006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. bNEAT: a Bayesian network method for detecting epistatic interactions in genome-wide association studies.
    Han B; Chen XW
    BMC Genomics; 2011; 12 Suppl 2(Suppl 2):S9. PubMed ID: 21989368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying genetic interactions in genome-wide data using Bayesian networks.
    Jiang X; Barmada MM; Visweswaran S
    Genet Epidemiol; 2010 Sep; 34(6):575-81. PubMed ID: 20568290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EpiMOGA: An Epistasis Detection Method Based on a Multi-Objective Genetic Algorithm.
    Chen Y; Xu F; Pian C; Xu M; Kong L; Fang J; Li Z; Zhang L
    Genes (Basel); 2021 Jan; 12(2):. PubMed ID: 33525573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. LEAP: biomarker inference through learning and evaluating association patterns.
    Jiang X; Neapolitan RE
    Genet Epidemiol; 2015 Mar; 39(3):173-84. PubMed ID: 25677188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A fast algorithm for learning epistatic genomic relationships.
    Jiang X; Neapolitan RE; Barmada MM; Visweswaran S; Cooper GF
    AMIA Annu Symp Proc; 2010 Nov; 2010():341-5. PubMed ID: 21346997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Introducing Heuristic Information Into Ant Colony Optimization Algorithm for Identifying Epistasis.
    Sun Y; Wang X; Shang J; Liu JX; Zheng CH; Lei X
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(4):1253-1261. PubMed ID: 30403637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-throughput analysis of epistasis in genome-wide association studies with BiForce.
    Gyenesei A; Moody J; Semple CA; Haley CS; Wei WH
    Bioinformatics; 2012 Aug; 28(15):1957-64. PubMed ID: 22618535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detecting purely epistatic multi-locus interactions by an omnibus permutation test on ensembles of two-locus analyses.
    Wongseree W; Assawamakin A; Piroonratana T; Sinsomros S; Limwongse C; Chaiyaratana N
    BMC Bioinformatics; 2009 Sep; 10():294. PubMed ID: 19761607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Bayesian model for detection of high-order interactions among genetic variants in genome-wide association studies.
    Wang J; Joshi T; Valliyodan B; Shi H; Liang Y; Nguyen HT; Zhang J; Xu D
    BMC Genomics; 2015 Nov; 16():1011. PubMed ID: 26607428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GWIS--model-free, fast and exhaustive search for epistatic interactions in case-control GWAS.
    Goudey B; Rawlinson D; Wang Q; Shi F; Ferra H; Campbell RM; Stern L; Inouye MT; Ong CS; Kowalczyk A
    BMC Genomics; 2013; 14 Suppl 3(Suppl 3):S10. PubMed ID: 23819779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FEPI-MB: identifying SNPs-disease association using a Markov Blanket-based approach.
    Han B; Chen XW; Talebizadeh Z
    BMC Bioinformatics; 2011 Nov; 12 Suppl 12(Suppl 12):S3. PubMed ID: 22168374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.