BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

430 related articles for article (PubMed ID: 2454913)

  • 1. Cloning and nucleotide sequences of histidase and regulatory genes in the Bacillus subtilis hut operon and positive regulation of the operon.
    Oda M; Sugishita A; Furukawa K
    J Bacteriol; 1988 Jul; 170(7):3199-205. PubMed ID: 2454913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of histidine and proline degradation enzymes by amino acid availability in Bacillus subtilis.
    Atkinson MR; Wray LV; Fisher SH
    J Bacteriol; 1990 Sep; 172(9):4758-65. PubMed ID: 2118500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cloning and sequencing of a 29 kb region of the Bacillus subtilis genome containing the hut and wapA loci.
    Yoshida K; Sano H; Seki S; Oda M; Fujimura M; Fujita Y
    Microbiology (Reading); 1995 Feb; 141 ( Pt 2)():337-43. PubMed ID: 7704263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequence analysis of the hutH gene encoding histidine ammonia-lyase in Pseudomonas putida.
    Consevage MW; Phillips AT
    J Bacteriol; 1990 May; 172(5):2224-9. PubMed ID: 2332400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of Bacillus subtilis hut operon expression indicates that histidine-dependent induction is mediated primarily by transcriptional antitermination and that amino acid repression is mediated by two mechanisms: regulation of transcription initiation and inhibition of histidine transport.
    Wray LV; Fisher SH
    J Bacteriol; 1994 Sep; 176(17):5466-73. PubMed ID: 8071225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catabolite repression of the Bacillus subtilis hut operon requires a cis-acting site located downstream of the transcription initiation site.
    Wray LV; Pettengill FK; Fisher SH
    J Bacteriol; 1994 Apr; 176(7):1894-902. PubMed ID: 8144455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of the transcriptional activity of the hut promoter in Bacillus subtilis and identification of a cis-acting regulatory region associated with catabolite repression downstream from the site of transcription.
    Oda M; Katagai T; Tomura D; Shoun H; Hoshino T; Furukawa K
    Mol Microbiol; 1992 Sep; 6(18):2573-82. PubMed ID: 1360137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional organization and nucleotide sequence of the Bacillus subtilis pyrimidine biosynthetic operon.
    Quinn CL; Stephenson BT; Switzer RL
    J Biol Chem; 1991 May; 266(14):9113-27. PubMed ID: 1709162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. cis-acting regulatory sequences for antitermination in the transcript of the Bacillus subtilis hut operon and histidine-dependent binding of HutP to the transcript containing the regulatory sequences.
    Oda M; Kobayashi N; Ito A; Kurusu Y; Taira K
    Mol Microbiol; 2000 Mar; 35(5):1244-54. PubMed ID: 10712704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of the Bacillus subtilis hut operon at the onset of stationary growth phase in nutrient sporulation medium results primarily from the relief of amino acid repression of histidine transport.
    Atkinson MR; Wray LV; Fisher SH
    J Bacteriol; 1993 Jul; 175(14):4282-9. PubMed ID: 7687247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequence and transcription mapping of Bacillus subtilis competence genes comB and comA, one of which is related to a family of bacterial regulatory determinants.
    Weinrauch Y; Guillen N; Dubnau DA
    J Bacteriol; 1989 Oct; 171(10):5362-75. PubMed ID: 2507523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of Bacillus subtilis catabolite repression by transition state regulatory protein AbrB.
    Fisher SH; Strauch MA; Atkinson MR; Wray LV
    J Bacteriol; 1994 Apr; 176(7):1903-12. PubMed ID: 8144456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of HutP-dependent transcription antitermination in the Bacillus subtilis hut operon: identification of HutP binding sites on hut antiterminator RNA and the involvement of the N-terminus of HutP in binding of HutP to the antiterminator RNA.
    Oda M; Kobayashi N; Fujita M; Miyazaki Y; Sadaie Y; Kurusu Y; Nishikawa S
    Mol Microbiol; 2004 Feb; 51(4):1155-68. PubMed ID: 14763987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel Bacillus subtilis gene involved in negative control of sporulation and degradative-enzyme production.
    Honjo M; Nakayama A; Fukazawa K; Kawamura K; Ando K; Hori M; Furutani Y
    J Bacteriol; 1990 Apr; 172(4):1783-90. PubMed ID: 2108124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of histidine-dependent antitermination in Bacillus subtilis hut operon.
    Oda M; Kobayashi N; Kurusu Y; Fujita M
    Nucleic Acids Symp Ser; 2000; (44):5-6. PubMed ID: 12903241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bidirectional promoter in the hut(P) region of the histidine utilization (hut) operons from Klebsiella aerogenes.
    Nieuwkoop AJ; Baldauf SA; Hudspeth ME; Bender RA
    J Bacteriol; 1988 May; 170(5):2240-6. PubMed ID: 2834335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel mutation, of the Bacillus subtilis hut operon that relieves both catabolite repression and amino acid repression.
    Eda S; Hoshino T; Oda M
    Appl Microbiol Biotechnol; 1999 Jan; 51(1):85-90. PubMed ID: 10077824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Histidine ammonia-lyase from Streptomyces griseus.
    Wu PC; Kroening TA; White PJ; Kendrick KE
    Gene; 1992 Jun; 115(1-2):19-25. PubMed ID: 1612436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic and physical maps of Klebsiella aerogenes genes for histidine utilization (hut).
    Boylan SA; Bender RA
    Mol Gen Genet; 1984; 193(1):99-103. PubMed ID: 6361501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nucleotide sequence and genetic organization of the Bacillus subtilis comG operon.
    Albano M; Breitling R; Dubnau DA
    J Bacteriol; 1989 Oct; 171(10):5386-404. PubMed ID: 2507524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.