These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

58 related articles for article (PubMed ID: 24549312)

  • 1. [The effect of different concentrations of indoleacetic acid paste on the transport of (32)P in decapitated pea epicotyls].
    Sebánek J
    Planta; 1967 Sep; 75(3):283-5. PubMed ID: 24549312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Abscisic acid and apical dominance in Phaseolus coccineus L.
    Hartung W; Steigerwald F
    Planta; 1977 Jan; 134(3):295-9. PubMed ID: 24419785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Attraction of gibberellin by indoleacetic acid as a factor in apical dominance].
    Sebánek J; Hink J
    Planta; 1967 Jun; 76(2):124-8. PubMed ID: 24549420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The characterization of gio, a new pea mutant, shows the role of indoleacetic acid in the control of fruit development by the apical shoot.
    Rodrigo MJ; López-Díaz I; García-Martínez JL
    Plant J; 1998 Apr; 14(1):83-90. PubMed ID: 15494055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of auxin on the incorporation of [(3)H]thymidine into the DNA of pea epicotyls.
    Sherwin JE; Gordon SA
    Planta; 1974 Mar; 116(1):65-72. PubMed ID: 24458993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Asymmetric distribution of auxin correlates with gravitropism and phototropism but not with autostraightening (autotropism) in pea epicotyls.
    Haga K; Iino M
    J Exp Bot; 2006; 57(4):837-47. PubMed ID: 16467412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Changes in the nucleoprotein influenced by auxin and ascorbic acid in the course of root formation in pea epicotyls].
    Fellenberg G
    Planta; 1969 Dec; 84(4):324-38. PubMed ID: 24515497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of ethylene, kinetin, and calcium on growth and wall composition of pea epicotyls.
    Mondal MH; Nance JF
    Plant Physiol; 1975 Mar; 55(3):450-4. PubMed ID: 16659100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graviresponse and its regulation from the aspect of molecular levels in higher plants: growth and development, and auxin polar transport in etiolated pea seedlings under microgravity.
    Miyamoto K; Hoshino T; Hitotsubashi R; Tanimoto E; Ueda J
    Biol Sci Space; 2003 Oct; 17(3):234-5. PubMed ID: 14676393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Massive synthesis of ribonucleic Acid and cellulase in the pea epicotyl in response to indoleacetic Acid, with and without concurrent cell division.
    Fan DF; Maclachlan GA
    Plant Physiol; 1967 Aug; 42(8):1114-22. PubMed ID: 16656623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-invasive quantification of endogenous root auxin transport using an integrated flux microsensor technique.
    McLamore ES; Diggs A; Calvo Marzal P; Shi J; Blakeslee JJ; Peer WA; Murphy AS; Porterfield DM
    Plant J; 2010 Sep; 63(6):1004-16. PubMed ID: 20626658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of calcium and kinetin on growth and cell wall composition of pea epicotyls.
    Nance JF
    Plant Physiol; 1973 Feb; 51(2):312-7. PubMed ID: 16658321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immunolocalization of IAA and ABA in roots and needles of radiata pine (Pinus radiata) during drought and rewatering.
    De Diego N; Rodríguez JL; Dodd IC; Pérez-Alfocea F; Moncaleán P; Lacuesta M
    Tree Physiol; 2013 May; 33(5):537-49. PubMed ID: 23677119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subcellular Localization of IAA Oxidase in Peas.
    Waldrum JD; Davies E
    Plant Physiol; 1981 Dec; 68(6):1303-7. PubMed ID: 16662097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The improved phytoextraction of lead (Pb) and the growth of maize (Zeamays L.): the role of plant growth regulators (GA3 and IAA) and EDTA alone and in combinations.
    Hadi F; Bano A; Fuller MP
    Chemosphere; 2010 Jun; 80(4):457-62. PubMed ID: 20435330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Auxin and kinetin interaction in apical dominance.
    Davies CR; Seth AK; Wareing PF
    Science; 1966 Jan; 151(3709):468-9. PubMed ID: 17798523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of indoleacetic Acid with its inositol and glucoside conjugates in Avena coleoptile curvature.
    Wodzicki TJ; Pharis RP; Wodzicki AB
    Plant Physiol; 1987 Aug; 84(4):1139-42. PubMed ID: 16665574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Auxin-gibberellin interaction in apical dominance.
    Scott TK; Case DB; Jacobs WP
    Plant Physiol; 1967 Oct; 42(10):1329-33. PubMed ID: 16656659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of mineral nutrients and growth regulators in the apical dominance in Solanum sisymbrifolium.
    Wakhloo JL
    Planta; 1970 Sep; 91(3):190-4. PubMed ID: 24500046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies on 3-Indoleacetic Acid Metabolism. VI. 3-Indoleacetic Acid Uptake and Metabolism by Pea Roots and Epicotyls.
    Andreae WA; Van Ysselstein MW
    Plant Physiol; 1960 Mar; 35(2):225-32. PubMed ID: 16655333
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.