BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 24549395)

  • 1. Bio-chemo-mechanical models for nuclear deformation in adherent eukaryotic cells.
    Nava MM; Raimondi MT; Pietrabissa R
    Biomech Model Mechanobiol; 2014 Oct; 13(5):929-43. PubMed ID: 24549395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A three-dimensional finite element model of an adherent eukaryotic cell.
    McGarry JG; Prendergast PJ
    Eur Cell Mater; 2004 Apr; 7():27-33; discussion 33-4. PubMed ID: 15095253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Models of cytoskeletal mechanics of adherent cells.
    Stamenović D; Ingber DE
    Biomech Model Mechanobiol; 2002 Jun; 1(1):95-108. PubMed ID: 14586710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing cytoskeletal pre-stress and nuclear mechanics in endothelial cells with spatiotemporally controlled (de-)adhesion kinetics on micropatterned substrates.
    Versaevel M; Riaz M; Corne T; Grevesse T; Lantoine J; Mohammed D; Bruyère C; Alaimo L; De Vos WH; Gabriele S
    Cell Adh Migr; 2017 Jan; 11(1):98-109. PubMed ID: 27111836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Finite Element Bendo-Tensegrity Model of Eukaryotic Cell.
    Bansod YD; Matsumoto T; Nagayama K; Bursa J
    J Biomech Eng; 2018 Oct; 140(10):. PubMed ID: 30029237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of membrane stiffness and cytoskeletal element density on mechanical stimuli within cells: an analysis of the consequences of ageing in cells.
    Xue F; Lennon AB; McKayed KK; Campbell VA; Prendergast PJ
    Comput Methods Biomech Biomed Engin; 2015; 18(5):468-76. PubMed ID: 23947334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A three-dimensional random network model of the cytoskeleton and its role in mechanotransduction and nucleus deformation.
    Zeng Y; Yip AK; Teo SK; Chiam KH
    Biomech Model Mechanobiol; 2012 Jan; 11(1-2):49-59. PubMed ID: 21308391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental and computational investigation of the role of stress fiber contractility in the resistance of osteoblasts to compression.
    Weafer PP; Ronan W; Jarvis SP; McGarry JP
    Bull Math Biol; 2013 Aug; 75(8):1284-303. PubMed ID: 23354930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracellular stress transmission through actin stress fiber network in adherent vascular cells.
    Deguchi S; Ohashi T; Sato M
    Mol Cell Biomech; 2005 Dec; 2(4):205-16. PubMed ID: 16705866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical model of cytoskeleton structuration during cell adhesion and spreading.
    Maurin B; Cañadas P; Baudriller H; Montcourrier P; Bettache N
    J Biomech; 2008; 41(9):2036-41. PubMed ID: 18466907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transmission of mechanical stresses within the cytoskeleton of adherent cells: a theoretical analysis based on a multi-component cell model.
    Tracqui P; Ohayon J
    Acta Biotheor; 2004; 52(4):323-41. PubMed ID: 15520537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measuring nucleus mechanics within a living multicellular organism: Physical decoupling and attenuated recovery rate are physiological protective mechanisms of the cell nucleus under high mechanical load.
    Zuela-Sopilniak N; Bar-Sela D; Charar C; Wintner O; Gruenbaum Y; Buxboim A
    Mol Biol Cell; 2020 Aug; 31(17):1943-1950. PubMed ID: 32583745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the role of the actin cytoskeleton and nucleus in the biomechanical response of spread cells.
    Reynolds NH; Ronan W; Dowling EP; Owens P; McMeeking RM; McGarry JP
    Biomaterials; 2014 Apr; 35(13):4015-25. PubMed ID: 24529900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stem cell mechanical behaviour modelling: substrate's curvature influence during adhesion.
    Vassaux M; Milan JL
    Biomech Model Mechanobiol; 2017 Aug; 16(4):1295-1308. PubMed ID: 28224241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical stability of the cell nucleus - roles played by the cytoskeleton in nuclear deformation and strain recovery.
    Wang X; Liu H; Zhu M; Cao C; Xu Z; Tsatskis Y; Lau K; Kuok C; Filleter T; McNeill H; Simmons CA; Hopyan S; Sun Y
    J Cell Sci; 2018 Jul; 131(13):. PubMed ID: 29777038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulations of the contractile cycle in cell migration using a bio-chemical-mechanical model.
    Han SJ; Sniadecki NJ
    Comput Methods Biomech Biomed Engin; 2011 May; 14(5):459-68. PubMed ID: 21516530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytoskeletal mechanics in airway smooth muscle cells.
    Stamenović D
    Respir Physiol Neurobiol; 2008 Nov; 163(1-3):25-32. PubMed ID: 18395498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intermediate filament-deficient cells are mechanically softer at large deformation: a multi-scale simulation study.
    Bertaud J; Qin Z; Buehler MJ
    Acta Biomater; 2010 Jul; 6(7):2457-66. PubMed ID: 20102752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A bio-chemo-mechanical model for cell contractility.
    Deshpande VS; McMeeking RM; Evans AG
    Proc Natl Acad Sci U S A; 2006 Sep; 103(38):14015-20. PubMed ID: 16959880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of steady shear flow on the deformation of leukocyte adhered to vascular endothelial surface.
    Liu XH; Wang X; Yin HM
    Space Med Med Eng (Beijing); 2004 Feb; 17(1):7-11. PubMed ID: 15005109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.