These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 24549420)

  • 1. [Attraction of gibberellin by indoleacetic acid as a factor in apical dominance].
    Sebánek J; Hink J
    Planta; 1967 Jun; 76(2):124-8. PubMed ID: 24549420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [The effect of different concentrations of indoleacetic acid paste on the transport of (32)P in decapitated pea epicotyls].
    Sebánek J
    Planta; 1967 Sep; 75(3):283-5. PubMed ID: 24549312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stronger sink demand for metabolites supports dominance of the apical bud in etiolated growth.
    Buskila Y; Sela N; Teper-Bamnolker P; Tal I; Shani E; Weinstain R; Gaba V; Tam Y; Lers A; Eshel D
    J Exp Bot; 2016 Oct; 67(18):5495-5508. PubMed ID: 27580624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Basipetally polarised transport of [(3)H]gibberellin A 1 and [ (14)C]gibberellin A 3, and acropetal polarity of [ (14)C]indole-3-acetic acid transport, in stelar tissues of Phaseolus coccineus roots.
    Hartung W; Phillips ID
    Planta; 1974 Dec; 118(4):311-22. PubMed ID: 24442375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Auxin-gibberellin interaction in apical dominance: Experiments with tall and dwarf varieties of pea and bean.
    Phillips ID
    Planta; 1969 Dec; 86(4):315-23. PubMed ID: 24515856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Changes in the contents of abscisic acid, indoleacetic acid, and chloroplast pigments in pea seedlings treated with gibberellic acid].
    Tietz A; Dörffling K
    Planta; 1969 Jun; 85(2):118-25. PubMed ID: 24515584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of auxin on acropetal auxin transport in roots of corn.
    Feldman LJ
    Plant Physiol; 1981 Feb; 67(2):278-81. PubMed ID: 16661661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The characterization of gio, a new pea mutant, shows the role of indoleacetic acid in the control of fruit development by the apical shoot.
    Rodrigo MJ; López-Díaz I; García-Martínez JL
    Plant J; 1998 Apr; 14(1):83-90. PubMed ID: 15494055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transport of exogenous auxin in two-branched dwarf pea seedlings (Pisum sativum L.) : Some implications for polarity and apical dominance.
    Morris DA
    Planta; 1977 Jan; 136(1):91-6. PubMed ID: 24420232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of auxin on the incorporation of [(3)H]thymidine into the DNA of pea epicotyls.
    Sherwin JE; Gordon SA
    Planta; 1974 Mar; 116(1):65-72. PubMed ID: 24458993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Auxin-gibberellin interaction in apical dominance.
    Scott TK; Case DB; Jacobs WP
    Plant Physiol; 1967 Oct; 42(10):1329-33. PubMed ID: 16656659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of Auxin and Gibberellin on in Vivo Protein Synthesis during Early Pea Fruit Growth.
    Van Huizen R; Ozga JA; Reinecke DM
    Plant Physiol; 1996 Sep; 112(1):53-59. PubMed ID: 12226372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of cations on hormone transport in primary roots of Zea mays.
    Hasenstein KH; Evans ML
    Plant Physiol; 1988; 86(3):890-4. PubMed ID: 11538240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of roots, cytokinins and apical dominance in the control of lateral shoot form in Solanum andigena.
    Woolley DJ; Wareing PF
    Planta; 1972 Mar; 105(1):33-42. PubMed ID: 24477700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Auxin Transport, Gibberellin, and Apical Dominance.
    Jacobs WP; Case DB
    Science; 1965 Jun; 148(3678):1729-31. PubMed ID: 17819428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Some aspects of the control of root growth and georeaction: the involvement of indoleacetic Acid and abscisic Acid.
    Pilet PE
    Plant Physiol; 1981 May; 67(5):1047-50. PubMed ID: 16661780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GA(3) enhances root responsiveness to exogenous IAA by modulating auxin transport and signalling in Arabidopsis.
    Li G; Zhu C; Gan L; Ng D; Xia K
    Plant Cell Rep; 2015 Mar; 34(3):483-94. PubMed ID: 25540118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Movement of indoleacetic acid in coleoptiles of Avena sativa L. II. Suspension of polarity by total inhibition of the basipetal transport.
    Goldsmith MH
    Plant Physiol; 1966 Jan; 41(1):15-27. PubMed ID: 5904589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Auxin transport promotes Arabidopsis lateral root initiation.
    Casimiro I; Marchant A; Bhalerao RP; Beeckman T; Dhooge S; Swarup R; Graham N; Inzé D; Sandberg G; Casero PJ; Bennett M
    Plant Cell; 2001 Apr; 13(4):843-52. PubMed ID: 11283340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Red light-regulated growth. I. Changes in the abundance of indoleacetic acid and a 22-kilodalton auxin-binding protein in the maize mesocotyl.
    Jones AM; Cochran DS; Lamerson PM; Evans ML; Cohen JD
    Plant Physiol; 1991; 97(1):352-8. PubMed ID: 11538374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.